Robohub.org
 

Learning tasks across different environments


by
27 July 2010



share this:

In the future, robots will be expected to learn a task and execute it in a variety of realistic situations. Reinforcement-learning and planning algorithms are exactly intended for that purpose. However, one of the main challenges is to make sure actions learned in one environment can be used in new and unforeseen situations in real time.

To address this challenge, Stolle et al. have imagined a series of algorithms which they demonstrate on complex tasks such as solving a marble maze or making Boston Dynamic’s Little Dog navigate over complex terrain (see video below).

The first ingredient of success relies on making robots learn what action to take based on local features, meaning features as viewed by the robot (e.g. “there is a wall to the right”). These local features can then be recognized in new environments when the robot is in similar situations. Instead, many existing algorithms use global information, for example by saying “perform this action in position (x,y,z)”. Changing the environment however would typically make these global policies useless.

The second ingredient makes robots build libraries containing sequences of actions (trajectories) that can bring a robot from its current state to an aimed goal. Robots then apply the actions from the trajectory nearest to their state to achieve a task. This strategy is interesting because it is not computationally expensive and does not require large amounts of fast memory.

Finally, don’t miss the following video of little-dog climbing over a fence. This special purpose behavior can be used in a variety of situations.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.

Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

Human-robot interaction design retreat

  25 Nov 2025
Find out more about an event exploring design for human-robot interaction.

Robot Talk Episode 134 – Robotics as a hobby, with Kevin McAleer

  21 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kevin McAleer from kevsrobots about how to get started building robots at home.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence