Robohub.org
 

Locus Robotics raises $25 million for warehouse RaaS


by
24 November 2017



share this:

Locus Robotics, a Wilmington, MA-based startup, raised $25 million in a Series B funding led by Silicon Valley Scale Venture Partners, with additional participation from existing investors. Locus plans to use the funds to expand into international markets and build up its growing subscription-based robot fleet. Locus business model uses Robots-as-a-Service (RaaS) which allows customers to use Locus’ solutions without a large-scale capital investment.

The story of how Locus came to be is almost as interesting as why their mobile robots and RaaS business mode are getting so much attention and acceptance.

In March 2012, in an effort to make their distribution centers (DCs) as efficient as possible, Amazon acquired Kiva Systems for $775 million and almost immediately took them in-house. There was a year of confusion after the acquisition whether Kiva would continue providing DCs with Kiva robots. It became clear that Amazon was taking all Kiva’s production and that, at some future date, Kiva would stop supporting their existing client base and focus entirely on Amazon – which happened in April 2015 when Amazon renamed Kiva to Amazon Robotics and encouraged prospective users of Kiva technology to let Amazon Robotics and Amazon Services provide fulfillment within Amazon warehouses using Amazon robots.

Locus Robotics came to be because its founders were early adopters of Kiva Systems robotics technology. When they couldn’t expand with Kiva because Kiva had been taken off the market by Amazon, they were inspired to engineer a system they thought better and which empowered human pickers with mobile robots. The Locus mobile robot and related software are their solution.




Frank Tobe is the owner and publisher of The Robot Report, and is also a panel member for Robohub's Robotics by Invitation series.
Frank Tobe is the owner and publisher of The Robot Report, and is also a panel member for Robohub's Robotics by Invitation series.





Related posts :



Meet the AI-powered robotic dog ready to help with emergency response

  07 Jan 2026
Built by Texas A&M engineering students, this four-legged robot could be a powerful ally in search-and-rescue missions.

MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence