Robohub.org
 

Long-term control of brain-computer interfaces by users with locked-in syndrome


by
28 August 2017



share this:

Using Brain Computer Interfaces (BCI) as a way to give people with locked-in syndrome back reliable communication and control capabilities has long been a futuristic trope of medical dramas and sci-fi. A team from NCCR Robotics and CNBI, EPFL have recently published a paper detailing work as a step towards taking this technique into everyday lives of those affected by extreme paralysis.

BCIs measure brainwaves using sensors placed outside of the head. With careful training and calibration, these brainwaves can be used to understand the intention of the person they are recorded from. However, one of the challenges of using BCIs in everyday life is the variation in the BCI performance over time. This issue is particularly important for motor-restricted end-users, as they usually suffer from even higher fluctuations of their brain signals and resulting performance. One approach to tackle this issue is to use shared control approaches for BCI, which has so far been mostly based on predefined settings, providing a fixed level of assistance to the user.

The team tackled the issue of performance variation by developing a system capable of dynamically matching the user’s evolving capabilities with the appropriate level of assistance. The key element of this adaptive shared control framework is to incorporate the user’s brain state and signal reliability while the user is trying to deliver a BCI command.

The team tested their novel strategy with one person with incomplete locked-in syndrome, multiple times over the course of a year. The person was asked to imagine moving the right hand to trigger a “right command”, and the left hand for a “left command” to control an avatar in a computer game. They demonstrated how adaptive shared control can exploit an estimation of the BCI performance (in terms of command delivery time) to adjust online the level of assistance in a BCI game by regulating its speed. Remarkably, the results exhibited a stable performance over several months without recalibration of the BCI classifier or the performance estimator.

This work marks the first time that this design has been successfully tested with an end-user with incomplete locked-in syndrome and successfully replicates the results of earlier tests with able bodied subjects.

 

Reference:

S. Saeedi, R. Chavarriage and J. del R. Millán, “Long-Term Stable Control of Motor-Imagery BCI by a Locked-In User Through Adaptive Assistance,” IEEE Transactions on neural systems and rehabilitation engineering,” Vol. 25, no. 4, 380-391.



tags:


NCCR Robotics





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence