Robohub.org
 

Long-term control of brain-computer interfaces by users with locked-in syndrome


by
28 August 2017



share this:

Using Brain Computer Interfaces (BCI) as a way to give people with locked-in syndrome back reliable communication and control capabilities has long been a futuristic trope of medical dramas and sci-fi. A team from NCCR Robotics and CNBI, EPFL have recently published a paper detailing work as a step towards taking this technique into everyday lives of those affected by extreme paralysis.

BCIs measure brainwaves using sensors placed outside of the head. With careful training and calibration, these brainwaves can be used to understand the intention of the person they are recorded from. However, one of the challenges of using BCIs in everyday life is the variation in the BCI performance over time. This issue is particularly important for motor-restricted end-users, as they usually suffer from even higher fluctuations of their brain signals and resulting performance. One approach to tackle this issue is to use shared control approaches for BCI, which has so far been mostly based on predefined settings, providing a fixed level of assistance to the user.

The team tackled the issue of performance variation by developing a system capable of dynamically matching the user’s evolving capabilities with the appropriate level of assistance. The key element of this adaptive shared control framework is to incorporate the user’s brain state and signal reliability while the user is trying to deliver a BCI command.

The team tested their novel strategy with one person with incomplete locked-in syndrome, multiple times over the course of a year. The person was asked to imagine moving the right hand to trigger a “right command”, and the left hand for a “left command” to control an avatar in a computer game. They demonstrated how adaptive shared control can exploit an estimation of the BCI performance (in terms of command delivery time) to adjust online the level of assistance in a BCI game by regulating its speed. Remarkably, the results exhibited a stable performance over several months without recalibration of the BCI classifier or the performance estimator.

This work marks the first time that this design has been successfully tested with an end-user with incomplete locked-in syndrome and successfully replicates the results of earlier tests with able bodied subjects.

 

Reference:

S. Saeedi, R. Chavarriage and J. del R. Millán, “Long-Term Stable Control of Motor-Imagery BCI by a Locked-In User Through Adaptive Assistance,” IEEE Transactions on neural systems and rehabilitation engineering,” Vol. 25, no. 4, 380-391.



tags:


NCCR Robotics





Related posts :



Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video

AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence