Matthew Schroyer on “What is the best way to get a robotics education today?”

16 September 2013

share this:

A quality learning experience centered on robotics is hard to find for many students who lack STEM resources through their own schools. Although new science standards hope to improve the situation, K-12 schools are struggling to provide a basic STEM education, let alone opportunities involving more specialized lessons in robotics. So on more than one occasion, I have talked to parents who are struggling to find rewarding opportunities for their children. Fortunately, even if one lives in a “robot desert,” today there are many online and physical resources that can provide rich, self-guided education on robotics.


First, most modern robots are driven by computers, and those computers are driven by computer code. For a child or young adult, computer coding can be an excellent gateway into robotics, and it’s never been easier to learn how to code. Websites such as, provide lessons in several languages like C, C++, JavaScript, Ruby and Python.

I would say that it ultimately doesn’t matter which language a student chooses to learn, as the world of software development is continually churning out new languages and making older languages obsolete (COBOL, anyone?). What matters is understanding basic concepts like loops and boolean arguments, learning how to break down problems in a way that a computer can process and solve them, and being able to look through someone’s code and understand which line of code does what.

Second, it’s useful to understand how a robot’s computer code and physical parts (such as motors and sensors) work together as a system. Thanks to the “maker movement,” there’s a range of relatively inexpensive systems on the market today that make it increasingly easy for anyone to jump in and make a simple robot. These systems usually consist of a small circuit board that is embedded with a microcontroller “brain”, along with various connectors to hook up external devices. They frequently can be purchased in “kit” form, with a variety of odds-and-ends (LEDs, buttons, sensors, various small electrical components) and reading material that helps guide people through projects of varying complexity. They’re similar to the electronics kits of yore, but capable of so much more.

In a sense, these boards function as tiny home computers, except instead of plugging in keyboards or mice to manipulate programs, you’re plugging in servos to give the robot movement, or light sensors that enable the robot to sense and act differently in bright and dark environments. Arduino, BeagleBone, and RaspberryPi are all boards that are designed so that novice programmers can build functional electronics from the first project. Websites such as and carry some introductory exercises on doing basic things with these systems (getting a light to blink Morse code, for example), but there are many sophisticated projects scattered across the web by people who are very good at documenting the prototyping process and sharing code.

Last, there’s much a person can accomplish on their own, but the learning process can be much more efficient and fulfilling with the right mentor. These mentors can be found at places like FabLabs, Makerspaces, and hackerspaces, which are places where people who have an interest in programming, digital fabrication, and robotics collaborate. Increasingly, these workshops can be found at libraries and community centers. If one doesn’t exist, it’s possible to rally support in a community to create such a place.

The resources and tools at these workshops are very useful for building robots, and the people who congregate in them can provide useful advice, but a mentor need not be affiliated with any of these places to teach robotics. All a student really needs is a dedicated, trustworthy adult who is willing to learn and to teach.


Matthew Schroyer is a drone and data journalist based in Urbana, Illinois.
Matthew Schroyer is a drone and data journalist based in Urbana, Illinois.

Related posts :

Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by

Researchers release open-source photorealistic simulator for autonomous driving

MIT scientists unveil the first open-source simulation engine capable of constructing realistic environments for deployable training and testing of autonomous vehicles.
22 June 2022, by

In this episode, Audrow Nash speaks to Maria Telleria, who is a co-founder and the CTO of Canvas. Canvas makes a drywall finishing robot and is based in the Bay Area. In this interview, Maria talks ab...
21 June 2022, by and

Coffee with a Researcher (#ICRA2022)

As part of her role as one of the IEEE ICRA 2022 Science Communication Awardees, Avie Ravendran sat down virtually with a few researchers from academia and industry attending the conference.

Seeing the robots at #ICRA2022 through the eyes of a robot

Accessbility@ICRA2022 and OhmniLabs provided three OhmniBots for the conference, allowing students, faculty and interested industry members to attend the expo and poster sessions.
17 June 2022, by

Communicating innovation: What can we do better?

The question on what role communications play in forming the perception of innovative technology was discussed in this workshop. Experts explained how the innovation uptake should be supported by effective communication of innovations: explaining the benefits, tackling risks and fears of the audiences, and taking innovation closer to the general public.
15 June 2022, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association