Robohub.org
 

More specifically, how would they work?


by
22 November 2008



share this:

This a subject for research and development, of course, but it’s my ‘job’ to make this vision as accessible as I can, to both anticipate what that R&D might produce and describe it in plain language.

 

First, these machines will necessarily have sensory components. Digital cameras and microphones are practically a given, but they may also have infrared imaging, radar and/or laser scanning, chemical sensors to provide something akin to a sense of smell, pressure/stress sensors for a sense of touch, probes for soil moisture, temperature, pH, O2 content, and nutrient availability, weather instruments, and some means of locating themselves very precisely relative to the boundaries of a field or other stationary reference. Compared to most machines, they will have available a rich collection of information about their environments, rich compared even with what human senses provide.

 

Next, they will have significant computer processing power, sufficient to take the data streams from all of these sensory devices, find patterns in them, compare them with each other and with historical data (including the exact position of every seed and when it was planted), create and update a real time 3-dimensional model of their immediate surroundings, locate items of interest within that model, choose a course of action, and send the detailed instructions to the machine’s moving parts, closely monitoring their progress.

 

Finally, they will have various moving parts, likely including high resolution or specialized sensory components that can be sent in for a closer look. Those moving parts might include a range of grips, from fine tweezers to something strong enough to uproot small trees, mechanical snips, lasers with enough power to fry a meristem, high-pressure water jets capable of slicing through the stem of a plant, fingers to move other plant material out of the way, a vacuum for sampling air at ground level or removing insects, sprinklers and sprayers, trowels of various sizes, and, of course, the soil probes mentioned earlier. Such tools might be combined into sets incorporated into units which could be plugged onto the ends of articulated arms and quickly switched out.

 

That’s a basic outline, but we need to return to the data processing hardware and the code it runs to fill out the picture, since it can make the difference between an expensive toy and a productive machine that more than pays for itself. A major task the processor must perform is resource scheduling, and to do that effectively it must sort actions into those that can be performed without moving anything massive (slow) and without switching out tool units, those which require either movement or a tool switch but must nevertheless be accomplished before moving on, those which can be left until a future pass over the same area but not indefinitely, and those which can be left undone unless it becomes convenient to do them. Efficient scheduling also means mapping the movement of even the smallest parts so they proceed smoothly from one thing to the next, without having to retrace their paths more than is unavoidable.

 

An important point to be taken away from the previous paragraph is that scrimping on computing hardware and software is likely to prove counterproductive, by reducing the overall capacity of the machine disproportionately. We should expect the computing components to represent a substantial fraction of the overall cost of the machine, and we shouldn’t be surprised if they also consume a substantial fraction of its energy budget. Better to invest an extra 10-20% to make a given physical machine capable of performing the work of two, and to invest 1 or 2 kilowatt-hours to save ten.

 

Something which should be apparent from this mental exercise as a whole is that what’s being proposed is largely a simple extrapolation of technologies which already exist. There are already mechanical arms and mechanical grips; there are already sensors and various means of controlling machine operation. What’s mainly missing is the software which would turn data streams into a 3D model in a horticultural context, choose what to do, schedule resources, and map out the details. That’s a lot left to be done, requiring a significant investment for a long term payoff, but it’s a fairly straightforward problem, and divisible into more manageable chunks. Let’s get to it!

 

Reposted from Cultibotics.



tags: , , ,


John Payne





Related posts :



Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.

Gearing up for RoboCupJunior: Interview with Ana Patrícia Magalhães

and   18 Jun 2025
We hear from the organiser of RoboCupJunior 2025 and find out how the preparations are going for the event.

Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence