Robohub.org
 

Naomi Ehrich Leonard: Bio-inspired dynamics for multi-agent decision-making | CMU RI Seminar


by
04 March 2018



share this:

Link to video on YouTube

Abstract: “I will present distributed decision-making dynamics for multi-agent systems, motivated by studies of animal groups, such as house-hunting honeybees, and their extraordinary ability to make collective decisions that are both robust to disturbance and adaptable to change. The dynamics derive from principles of symmetry, consensus, and bifurcation in networked systems, exploiting instability as a means to flexibly transition from one stable solution to another. Feedback dynamics are derived for the bifurcation control, a variable representing social effort, such that flexible transition is made a controlled adaptive response.”




John Payne





Related posts :



Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.

Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence