Robohub.org
 

NASA gives MIT a humanoid robot to develop software for future space missions


by
18 November 2015



share this:
NASA's "Valkyrie" robot is 6 feet tall and weighs 290 pounds. Researchers at MIT's Computer Science and Artificial Intelligence Laboratory will test and develop the bot for future space missions. Photo: NASA

NASA’s “Valkyrie” robot is 6 feet tall and weighs 290 pounds. Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory will test and develop the bot for future space missions. Photo: NASA

By Adam Conner-Simons, MIT CSAIL

NASA announced yesterday that MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is one of two university research groups nationwide that will receive a 6-foot, 290-pound humanoid robot to test and develop for future space missions to Mars and beyond.

A group led by CSAIL principal investigator Russ Tedrake will develop algorithms for the robot, known as “Valkyrie” or “R5,” as part of NASA’s upcoming Space Robotics Challenge, which aims to create more dexterous autonomous robots that can help or even take the place of humans “extreme space” missions. (NASA’s challenge is divided into a virtual competition using robotic simulations, and a physical competition using the robot.)

Tedrake’s team, which was selected from groups that were entered in this year’s Defense Advanced Research Projects Agency (DARPA) Robotics Challenge, will receive as much as $250,000 a year for two years from NASA’s Space Technology Mission Directive.

Exploring deep space by bot

NASA says it is interested in humanoid robots because they can help or even replace astronauts working in extreme space environments. Robots like R5 could be used in future missions either as precursor robots performing mission tasks before humans arrive or as human-assistive robots collaborating with the human crew. While R5 was initially designed to complete disaster-relief maneuvers, its main goal is now to prove itself worthy of even trickier terrain: deep-space exploration.

“Advances in robotics, including human-robotic collaboration, are critical to developing the capabilities required for our journey to Mars,” said Steve Jurczyk, associate administrator for the Space Technology Mission Directorate (STMD) at NASA Headquarters in Washington, in a NASA press release. “We are excited to engage these university research groups to help NASA with this next big step in robotics technology development.”

Autonomy for autos, robots and more

As head of CSAIL’s Robot Locomotion Group, Tedrake has extensive experience with autonomous robots. Over the past three years he led a team of more than 20 researchers to develop algorithms for a government competition to get another 6-foot-tall humanoid robot named Atlas to open doors, turn valves, drill holes, climb stairs, scramble over cinder blocks, and drive a car — all in the space of one hour.

Tedrake is also part of CSAIL’s new $25 million Toyota-funded research center for autonomous cars, specifically focused on advanced decision-making algorithms and systems that allow vehicles to perceive and navigate their surroundings safely, without human input. The larger collaboration will be coordinated by Gill Pratt PhD ’89, a former MIT professor who most recently served as program director at DARPA’s Defense Sciences Office.

In addition to Tedrake’s team at CSAIL, NASA also awarded a R5 robot to a team led by Taskin Padir at Northeastern University.



tags: , , , , , ,


MIT News





Related posts :



CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence