Robohub.org
 

New Horizon 2020 robotics projects, 2016: CYBERLEGs++

by
09 July 2017



share this:

In 2016, the European Union co-funded 17 new robotics projects from the Horizon 2020 Framework Programme for research and innovation. 16 of these resulted from the robotics work programme, and 1 project resulted from the Societal Challenges part of Horizon 2020. The robotics work programme implements the robotics strategy developed by SPARC, the Public-Private Partnership for Robotics in Europe (see the Strategic Research Agenda). 

Every week, euRobotics will publish a video interview with a project, so that you can find out more about their activities. This week features CYBERLEGs++: The CYBERnetic LowEr-Limb CoGnitive Ortho-prosthesis Plus Plus.

Objectives

The goal of CYBERLEGs++ is to validate the technical and economic viability of the powered robotic ortho-prosthesis developed within the FP7-ICT-CYBERLEGs project. The aim is to enhance/restore the mobility of transfemoral amputees and to enable them to perform locomotion tasks such as ground-level walking, walking up and down slopes, climbing/descending stairs, standing up, sitting down and turning in scenarios of real life. Restored mobility will allow amputees to perform physical activity thus counteracting physical decline and improving the overall health status and quality of life.



Expected Impact

By demonstrating in an operational environment (TRL=7) – from both the technical and economic viability view point – a modular robotics technology for healthcare, with the ultimate goal of fostering its market exploitation CYBERLEGs Plus Pus will have an impact on:

Society: CLs++ technology will contribute to increase the mobility of dysvascular amputees, and, more generally, of disabled persons with mild lower-limb impairments;
Science and technology: CLs++ will further advance the hardware and software modules of the ortho-prosthesis developed within the FP7 CYBERLEGs project and validate its efficacy through a multi-centre clinical study;
Market: CLs++ will foster the market exploitation of high-tech robotic systems and thus will promote the growth of both a robotics SME and a large healthcare company.

Partners
SCUOLA SUPERIORE SANT’ANNA (SSSA)
UNIVERSITÉ CATHOLIQUE DE LOUVAIN (UCL)
VRIJE UNIVERSITEIT BRUSSEL (VUB)
UNIVERZA V LJUBLJANI (UL)
FONDAZIONE DON CARLO GNOCCHI (FDG)
ÖSSUR (OSS)
IUVO S.R.L. (IUVO)

Coordinator
Prof. Nicola Vitiello, The BioRobotics Institute
Scuola Superiore Sant’Anna, Pisa, Italy
nicola.vitiello@santannapisa.it

Project website
www.cyberlegs.org

Watch all EU-projects videos


If you enjoyed reading this article, you may also want to read:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: ,


SPARC is the partnership for robotics in Europe.
SPARC is the partnership for robotics in Europe.





Related posts :



Interview with Dautzenberg Roman: #IROS2023 Best Paper Award on Mobile Manipulation sponsored by OMRON Sinic X Corp.

The award-winning author describe their work on an aerial robot which can exert large forces onto walls.
19 November 2023, by

Robot Talk Episode 62 – Jorvon Moss

In the latest episode of the Robot Talk podcast, Claire chatted to Jorvon (Odd-Jayy) Moss from Digikey about making robots at home, and robot design and aesthetics.
17 November 2023, by

California is the robotics capital of the world

In California, robotics technology is a small fish in a much bigger technology pond, and that tends to conceal how important Californian companies are to the robotics revolution.
12 November 2023, by

Robot Talk Episode 61 – Masoumeh Mansouri

In the latest episode of the Robot Talk podcast, Claire chatted to Masoumeh (Iran) Mansouri from the University of Birmingham about culturally sensitive robots and planning in complex environments.
10 November 2023, by

The 5 levels of Sustainable Robotics

Robots can solve the UN SDGs and not just via the application area.
08 November 2023, by

Using language to give robots a better grasp of an open-ended world

By blending 2D images with foundation models to build 3D feature fields, a new MIT method helps robots understand and manipulate nearby objects with open-ended language prompts.
06 November 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association