Robohub.org
 

Nuke plant decommissioning robots wanted


by
27 February 2013



share this:

The Mitsubishi Research Institute, Inc. (MRI) invites the robotics community to upgrade and to develop a technical catalog of robotic technologies to move and investigate inside nuclear reactor buildings, namely 1) a flight technology to enable access to the top floor of the nuclear reactor building and 2) a technology to move around and conduct investigations under water in a flooded reactor building.

MRI is entrusted by the Agency for Natural Resources and Energy to develop machines and equipment for decommissioning the TEPCO Fukushima Dai-ichi nuclear power plant, which was damaged during the East Japan Earthquake on March 11, 2011.

On December 21, 2011, the Government-TEPCO Council adopted a “Mid-to-Long-Term Roadmap towards the Decommissioning of Fukushima Dai-ichi Nuclear Power Units 1-4”. The roadmap presents a three phase approach to decommission the plant over 40 years.

Japanese decommissioning robots

Sakura

The Sakura remote-controlled transfer robot, developed by the Chiba Institute of Technology, is the latest version in a line of disaster response robots, and was designed to enter and survey the basements of the damaged Fukushima nuclear reactor buildings. It is specifically designed to collect information in underground facilities, where surveys are considered most difficult. The underground portion of the nuclear reactor building has severe conditions not seen in the above ground portion. There, a robot needs to have high mobility and be able to withstand high radiation levels.

Quince

Quince is a rescue robot designed for CBRNE disasters – situations involving Chemical, Biological, Radiological, Nuclear, and Explosive hazards. It was developed to perform on-site surveys on behalf of humans, such as fire-fighters. Hypothetical disasters include accidents at plants handling toxic substances, leaks of hazardous chemicals from chemical plants, explosions, and acts of terror like the notorious subway sarin incident. Risks are particularly high in enclosed spaces (underground and inside buildings), and expectations are high for robots as they will protect officers from secondary disasters.
Quince surveyed the inside of the Fukushima Dai-ichi nuclear power plant. With some modifications, it was able to photograph the details of the buildings, create radiation dose maps, and sample radioactive materials floating in the air. It has been helping to reduce the radiation dose experienced by on-site workers and to shorten their work period.

Toshiba tetrapod

In November 2012, Toshiba Corporation unveiled a new tetrapod robot that can carry out investigative and recovery work in locations that are too risky for people to enter, such as the Fukushima power plant.
The new robot integrates a camera and dosimeter and can investigate the condition of nuclear power plants by remote-controlled operation. The multiple joints in its legs are controlled by a dedicated movement algorithm that enables the robot to walk on uneven surfaces, avoid obstacles and climb stairs, securing access to areas that are challenging to reach for wheeled robots or crawlers. The robot also has a folding arm that can release a smaller robot that mounts a second camera. The smaller robot can be positioned to take images of places that are too small for the larger robot to enter. It is connected to the main robot by a cable.

MEISTeR

In December 2012, Mitsubishi Heavy Industries, Ltd. (MHI) unveiled a prototype of the “MEISTeR (Maintenance Equipment Integrated System of Telecontrol Robot),” a two-armed robot to assist recovery work after disasters or severe accidents by performing light-duty tasks in areas inaccessible to humans. By changing its arms’ attachment tools, the robot can perform various tasks such as carrying objects, drilling and opening/closing valves. Going forward, MHI will continue to improve and explore possible applications in crisis management.

 



tags: , ,


Wolfgang Heller





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence