Robohub.org
 

Of thresholds and the forces that drive change


by
29 June 2009



share this:

“But why would you want to turn farming over to machines?”

 

Ahem! Farming has been conducted primarily by machines for going on a hundred years, at least in the United States. I want to substitute intelligent machines that proceed carefully and work continuously for big, dumb machines that are designed to get the job over with as quickly as possible, and at the same time move farmers out of their roles as machine operators and into the roles of technician and manager.

 

The threshold that still looms large but is shrinking with every passing week, primarily due to advancements in military robotics, is autonomous operation, making it possible for one person to manage many machines simultaneously, instead of being symbiotically fused to one for the entire time it is in operation.

 

At some point in the not too distant future, it will become practical to turn tractors loose under robotic control, but by the time that happens that same threshold will already have been crossed by less powerful, less dangerous machines. Moreover, once tractors arrive at autonomous operation there’s not much to drive further development. Sure, you can push efficiency higher and accident rates lower, but it’s still the same old thing.

 

With the sort of detail-oriented systems I’ve been attempting to imagine and describe, that threshold of autonomous operation is just the beginning, the spark that lights the rocket. Knowledge that would be of no use to autonomous tractors – because they’d still just be pulling implements around a field – could improve the performance of machines using a horticultural approach and improve the productivity of land they tend. Moreover, they would be able to discern much of that knowledge for themselves, through experience (statistics applied to crop measurements) and sharing information with each other.

 

For every increment in sensory capability, processing power, mechanical versatility, and software sophistication there would be a potential payoff, in machine performance, productivity, and/or the quality of the overall result.

 

That’s what a growth market looks like.

 

Reposted from Cultibotics.



tags:


John Payne





Related posts :



Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence