Robohub.org
 

On sustainable robotics


by
20 April 2021



share this:

The climate emergency brooks no compromise: every human activity or artefact is either part of the solution or it is part of the problem.

I’ve worried about the sustainability of consumer electronics for some time, and, more recently, the shocking energy costs of big AI. But the climate emergency has also caused me to think hard about the sustainability of robots. In recent papers we have defined responsible robotics as

… the application of Responsible Innovation in the design, manufacture, operation, repair and end-of-life recycling of robots, that seeks the most benefit to society and the least harm to the environment.

I will wager that few robotics manufacturers – even the most responsible – pay much attention to repairability and recyclability of their robots. And, I’m ashamed to say, very little robotics research is focused on the development of sustainable robots. A search on google scholar throws up a handful of excellent papers detailing work on upcycled and sustainable robots (2018), sustainable robotics for smart cities (2018), green marketing of sustainable robots (2019), and sustainable soft robots (2020).

I was therefore delighted when, a few weeks ago, my friend and colleague Michael Fisher, drafted a proposal for a new standard on Sustainable Robotics. The proposal received strong support from the BSI robotics committee. Here is the formal notice requesting comments on Michael’s proposal: BS XXXX Guide to the Sustainable Design and Application of Robotic Systems.

So what would make a robot sustainable? In my view it would have to be:

  • Made from sustainable materials. This means the robot should, as far as possible, use recycled materials (plastics or metals), or biodegradable materials like wood. Any new materials should be ethically sourced.
  • Low energy. The robot should be designed to use as little energy as possible. It should have energy saving modes. If an outdoor robot then is should use solar cells and/or hydrogen cells when they become small enough for mobile robots. Battery powered robots should always be rechargeable.
  • Repairable. The robot would be designed for ease of repair using modular, replaceable parts as much as possible – especially the battery. Additionally the manufacturers should provide a repair manual so that local workshops could fix most faults.
  • Recyclable. Robots will eventually come to the end of their useful life, and if they cannot be repaired or recycled we risk them being dumped in landfill. To reduce this risk the robot should be designed to make it easy re-use parts, such as electronics and motors, and re-cycle batteries, metals and plastics.

These are, for me, the four fundamental requirements, but there are others. The BSI proposal adds also the environmental effects of deployment (it is unlikely we would consider a sustainable robot designed to spray pesticides as truly sustainable), or of failure in the field. Also the environmental effect of maintenance; cleaning materials, for instance. The proposal also looks toward sustainable, upcyclable robots as part of a circular economy.

This is Ecobot III, developed some years ago by colleagues in the Bristol Robotics Lab’s Bio-energy group. The robot runs on electricity extracted from biomass by 48 microbial fuel cells (the two concentric brick coloured rings). The robot is 90% 3D printed, and the plastic is recyclable.

I would love to see, in the near term, not only a new standard on Sustainable Robotics as a guide (and spur) for manufacturers, but the emergence of Sustainable Robotics as a thriving new sub-discipline in robotics.



tags: ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Robot Talk Episode 115 – Robot dogs working in industry, with Benjamin Mottis

  28 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Benjamin Mottis from ANYbotics about deploying their four-legged ANYmal robot in a variety of industries.

Robot Talk Episode 114 – Reducing waste with robotics, with Josie Gotz

  21 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Josie Gotz from the Manufacturing Technology Centre about robotics for material recovery, reuse and recycling.

Robot Talk Episode 113 – Soft robotic hands, with Kaspar Althoefer

  14 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kaspar Althoefer from Queen Mary University of London about soft robotic manipulators for healthcare and manufacturing.

Robot Talk Episode 112 – Getting creative with robotics, with Vali Lalioti

  07 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Vali Lalioti from the University of the Arts London about how art, culture and robotics interact.

Robot Talk Episode 111 – Robots for climate action, with Patrick Meier

  28 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Patrick Meier from the Climate Robotics Network about how robots can help scale action on climate change.

Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association