Robohub.org
 

Peter Stone: Robot Skill Learning: From the Real World to Simulation and Back | CMU RI Seminar


by
02 April 2017



share this:

Link to video on YouTube

Abstract: “For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of interacting skills. This talk begins by introducing “Overlapping Layered Learning” as a novel hierarchical machine learning paradigm for learning such interacting skills in simulation. While learning in simulation is appealing because it avoids the prohibitive sample cost of learning in the real world, unfortunately policies learned in simulation often fail when applied on physical robots. This talk then introduces “Grounded Simulation Learning” to address this problem by algorithmically altering the simulator to better match the real world, and connects this new algorithm to a theoretical analysis of off-policy evaluation in reinforcement learning. Overlapping Layered Learning was the key deciding factor in UT Austin Villa’s RoboCup robot soccer 3D simulation league championship, and Grounded Simulation Learning has led to the fastest known stable walk on a widely used humanoid robot.”




John Payne





Related posts :



Rethinking how robots move: Light and AI drive precise motion in soft robotic arm

  01 Oct 2025
Researchers at Rice University have developed a soft robotic arm capable of performing complex tasks.

RoboCup Logistics League: an interview with Alexander Ferrein, Till Hofmann and Wataru Uemura

and   25 Sep 2025
Find out more about the RoboCup league focused on production logistics and the planning.

Drones and Droids: a co-operative strategy game

  22 Sep 2025
Scottish Association for Marine Science is running a crowdfunding campaign for educational card game.

Call for AAAI educational AI videos

  22 Sep 2025
Submit your contributions by 30 November 2025.

Self-supervised learning for soccer ball detection and beyond: interview with winners of the RoboCup 2025 best paper award

  19 Sep 2025
Method for improving ball detection can also be applied in other fields, such as precision farming.

#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence