Robohub.org
 

Place recognition and localization with omnidirectional vision


by
09 May 2011



share this:

Let’s say you just purchased a new service robot and you want it to be able to know its way in your apartment. The obvious thing to do would be to show it around, going from room to room saying “this is the living room” and “this is the kitchen”. The robot, equipped with an omnidirectional camera, could then take pictures along the way while recording its location. This will build-up its visual memory of the apartment. The challenge for the robot next time around is to figure out in what room it is (place recognition) and where it is in this room (localization) based on its current view of the world.

This requires finding a good way to compare new images to the robot’s visual memory. The comparison needs to be robust to robot motion, objects changing place and transformations required to use omnidirectional images. As a solution, Labbani-Igbida et al. propose to compute signatures for each omnidirectional image based on invariant Haar integrals. Signatures are numbers that capture distinctive features in the image (color, shape, texture, interest points…). By comparing signatures between images (similarity), the robot is able to determine in what room it is and at what location much faster than having to process the raw images.

Experiments were conducted using a Koala robot equipped with a paracatadioptric omnidirectional sensor. The robot was first placed in different rooms of an office environment where it took images to build a visual memory. The robot was then set loose to explore the office including places in the environment that had not been previously visited during the memory building phase.

Results show that the robot is able to do space recognition and localization in ways that outperform or perform similarly to state-of-the-art algorithms while being very time and memory efficient. In the future, authors would like to limit the number of images needed for the robot to build its visual memory.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.

Robot Talk Episode 142 – Collaborative robot arms, with Mark Gray

  30 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Mark Gray from Universal Robots about their lightweight robotic arms that work alongside humans.

Robot Talk Episode 141 – Our relationship with robot swarms, with Razanne Abu-Aisheh

  23 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Razanne Abu-Aisheh from the University of Bristol about how people feel about interacting with robot swarms.

Vine-inspired robotic gripper gently lifts heavy and fragile objects

  23 Jan 2026
The new design could be adapted to assist the elderly, sort warehouse products, or unload heavy cargo.

Robot Talk Episode 140 – Robot balance and agility, with Amir Patel

  16 Jan 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Amir Patel from University College London about designing robots with the agility and manoeuvrability of a cheetah.

Taking humanoid soccer to the next level: An interview with RoboCup trustee Alessandra Rossi

and   14 Jan 2026
Find out more about the forthcoming changes to the RoboCup soccer leagues.

Robots to navigate hiking trails

  12 Jan 2026
Find out more about work presented at IROS 2025 on autonomous hiking trail navigation via semantic segmentation and geometric analysis.


Robohub is supported by:





 













©2026.01 - Association for the Understanding of Artificial Intelligence