Robohub.org
 

Pros and cons for different types of drive selection

by
29 July 2016



share this:
Different wheels for robots and rovers. Credit: CC0 public domain

Different wheels for robots and rovers. Credit: CC0 public domain

In the past, we have looked at wheel design and the kinematics of skid steer and mecanum wheels. In this post, we will take a quick look at different types of mobility types (ie. wheels, tracks) and how to connect them. 

I know the items in this list are not direct comparisons. For example, listing rocker bogie is not necessarily exclusive to other types listed. Also, I know that you can design a vehicle to get around the pros and cons that I list below. The list is based on the common mechanical configurations.

For the purpose of this post:

  • Holonomic motion: is where a vehicle can go in all X and Y directions and is not constrained.
  • Non-holonomic motion: is where a vehicle is constrained to only certain motions. An example is a car that is not capable to drive sideways (with its ackerman steering). Don’t yell at me about the parallel parking magical cars. They are not the norm.
Source: Robots for Roboticists

Source: Robots for Roboticists

Type Pros Cons
Tracks (Differential Drive) Good mobility for rough terrain, low ground pressure Complex mechanism, high power usage when turning
Skid Steer 4 wheel Very simple, high weight capacity High power usage, requires skidding/slipping
Differential drive 2 wheel + Passive Caster(s) Easy Lower weight designs, less precise controls. bad for obstacles/bumps
2 wheel + 1 Powered Steering Caster Easy mechanical, powered steering wheel for control Lower weight designs, potentially a lot of weight on steering wheel.
2 wheel (Segway Drive) Easy mechanical, fun! Not dynamically stable
Ackerman Steering Wheels do not need to slip to turn. Fixed rear wheels makes control geometry easier. Increased motor count
Rear wheel forklift steering Tight maneuverability, good if weight is on front wheels Less responsive than ackerman, unstable at “high” speeds
Independent all wheel steering Lot of flexibility for motion Complexity of mechanism and large number of motors. More coordination needed for turns.
Rocker Bogie / Body Averaging Helps body average the chassis to minimize pitch. Allows all wheels to maintain ground contact while distributing the weight. Mechanical complexity
Omni Non-holonomic, light, simple, Best performance when traveling diagonal, number of wheels can be varied Motion can be bumpy, sensitive to nonsmooth terrain, low torque for pushing
Mecanum O* Skid steer is possible, holonomic motions, can support heavy loads Motion can be bumpy, very sensitive to nonsmooth terrain, can be noisy, lots of parts
Crab Steer Allows 4 wheel drive vehicle to translate at an angles/horizontally (holonomic motion). Often wheels can all turn in for point turns. All 4 wheels need to be actuated to spin and turn (often with 8 motors, but can be done with less). Can be unstable on hills.
Legs (2,4,6,etc..) Ease of steeping over difficult terrain Hard, complex, high power
Single Ball (Ballbot) Small size base, highly maneuverable, can change robots orientation Hard controls, not dynamically stable, good for taller robot and not wider robots
Inchworming** (Peristaltic Motion) Increased drawbar and slope climbing due to utilizing static wheels/friction Requires extra actuation, slower than typical motion, can be high power consumption

*Mecanum X vs O configuration is based on how the wheels are mounted. With mecanum wheels the left and right side wheels are physically different. Looking from the bottom you want an O configuration. The X configuration does not allow rotation (without fighting the rollers).

mecanum_X_vs_O

Mecanum wheel configurations. When viewed from the bottom the direction of the rollers form an X or an O shape.

** Basic description of inchworming. Inchworming moves one set of wheels at a time to utilize static friction for increased mobility.

Inchworming image. Image on left shows standard driving. Images on right shows inchworming during each of the two stages of motion. The top image shows the robot lowering while moving the front wheel. The bottom image shows the robot raising up while pulling the rear wheel in.

Inchworming image. Image on left shows standard driving. Images on right shows inchworming during each of the two stages of motion. The top image shows the robot lowering while moving the front wheel. The bottom image shows the robot raising up while pulling the rear wheel in.

First described here and further examined by others.

For more examples of unusual locomotion methods, visit unusuallocomotion.com.

Are there other mobility options that I should have included?

Drive Selection – Wheels, tracks and more appeared first on Robots For Roboticists.



tags: , ,


Robots for Roboticists David Kohanbash is a Robotics Engineer in Pittsburgh, PA in the United States. He loves building, playing and working with Robots.
Robots for Roboticists David Kohanbash is a Robotics Engineer in Pittsburgh, PA in the United States. He loves building, playing and working with Robots.





Related posts :



Tesla’s Optimus robot isn’t very impressive – but it may be a sign of better things to come

Musk has now unveiled a prototype of the robot, called Optimus, which he hopes to mass-produce and sell for less than US$20,000 (A$31,000).
04 October 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
03 October 2022, by and

Breaking through the mucus barrier

A capsule that tunnels through mucus in the GI tract could be used to orally administer large protein drugs such as insulin.
02 October 2022, by

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association