Robohub.org
 

Real-time behavior-based control


by
22 February 2011



share this:

Using behavior-based controllers, robots are theoretically able to rapidly react to their environment. This is typically done by having several behaviors, that map sensory input to actuator commands, run concurrently on the robot. A hierarchy then determines which behavior has access to the actuators.

If your robot needs to navigate a room, you might implement a trajectory planning behavior and a simple obstacle avoidance behavior with high priority to avoid any accidents. If the robot only has one processor, then both behaviors might run in “parallel” as threads. However, if one of your behaviors entails heavy processing, it might hog all the CPU power and impeach the high-priority behaviors from being executed at the right time. In the example above, this might lead to the robot crashing into obstacles. One solution consists in increasing the processing power although this might be incompatible with the size and cost constraints of your robot.

As an alternative, Woolley et al. propose a “Real-Time Unified Behavior Framework” to cope with real-time constraints in behavior-based systems. The framework allows time-critical reactive behaviors to be run at a desired time and in a periodic fashion. Instead, demanding processing tasks that are not critical to the safe operation of the robot are executed whenever possible. This is done by moving time-critical behaviors out of the Linux environment (which can not execute real-time tasks) and into an environment managed by a real-time scheduler.

Real-time tasks bypass Linux and run on the real-time scheduler.

Experiments were conducted on a Pioneer P2-AT8 robot equipped with 16 sonars, odometry, a SICK LMS200 laser scanner and a 1294 camera. The robot was programed to follow an orange cone through a hallway while avoiding obstacles. Results show that the robot was able to meet hard real-time constraints while running computationally demanding processes including FastSLAM.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.

#RoboCup2025: social media round-up part 2

  24 Jul 2025
Find out what participants got up to during the second half of RoboCup2025 in Salvador, Brazil.

#RoboCup2025: social media round-up 1

  21 Jul 2025
Find out what participants got up to during the opening days of RoboCup2025 in Salvador, Brazil.

Livestream of RoboCup2025

  18 Jul 2025
Watch the competition live from Salvador!

Tackling the 3D Simulation League: an interview with Klaus Dorer and Stefan Glaser

and   15 Jul 2025
With RoboCup2025 starting today, we found out more about the 3D simulation league, and the new simulator they have in the works.

An interview with Nicolai Ommer: the RoboCupSoccer Small Size League

and   01 Jul 2025
We caught up with Nicolai to find out more about the Small Size League, how the auto referees work, and how teams use AI.

RoboCupRescue: an interview with Adam Jacoff

and   25 Jun 2025
Find out what's new in the RoboCupRescue League this year.

Robot Talk Episode 126 – Why are we building humanoid robots?

  20 Jun 2025
In this special live recording at Imperial College London, Claire chatted to Ben Russell, Maryam Banitalebi Dehkordi, and Petar Kormushev about humanoid robotics.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence