Robohub.org
 

Real-time behavior-based control

by
22 February 2011



share this:

Using behavior-based controllers, robots are theoretically able to rapidly react to their environment. This is typically done by having several behaviors, that map sensory input to actuator commands, run concurrently on the robot. A hierarchy then determines which behavior has access to the actuators.

If your robot needs to navigate a room, you might implement a trajectory planning behavior and a simple obstacle avoidance behavior with high priority to avoid any accidents. If the robot only has one processor, then both behaviors might run in “parallel” as threads. However, if one of your behaviors entails heavy processing, it might hog all the CPU power and impeach the high-priority behaviors from being executed at the right time. In the example above, this might lead to the robot crashing into obstacles. One solution consists in increasing the processing power although this might be incompatible with the size and cost constraints of your robot.

As an alternative, Woolley et al. propose a “Real-Time Unified Behavior Framework” to cope with real-time constraints in behavior-based systems. The framework allows time-critical reactive behaviors to be run at a desired time and in a periodic fashion. Instead, demanding processing tasks that are not critical to the safe operation of the robot are executed whenever possible. This is done by moving time-critical behaviors out of the Linux environment (which can not execute real-time tasks) and into an environment managed by a real-time scheduler.

Real-time tasks bypass Linux and run on the real-time scheduler.

Experiments were conducted on a Pioneer P2-AT8 robot equipped with 16 sonars, odometry, a SICK LMS200 laser scanner and a 1294 camera. The robot was programed to follow an orange cone through a hallway while avoiding obstacles. Results show that the robot was able to meet hard real-time constraints while running computationally demanding processes including FastSLAM.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Open Robotics Launches the Open Source Robotics Alliance

The Open Source Robotics Foundation (OSRF) is pleased to announce the creation of the Open Source Robotics Alliance (OSRA), a new initiative to strengthen the governance of our open-source robotics so...

Robot Talk Episode 77 – Patricia Shaw

In the latest episode of the Robot Talk podcast, Claire chatted to Patricia Shaw from Aberystwyth University all about home assistance robots, and robot learning and development.
18 March 2024, by

Robot Talk Episode 64 – Rav Chunilal

In the latest episode of the Robot Talk podcast, Claire chatted to Rav Chunilal from Sellafield all about robotics and AI for nuclear decommissioning.
31 December 2023, by

AI holidays 2023

Thanks to those that sent and suggested AI and robotics-themed holiday videos, images, and stories. Here’s a sample to get you into the spirit this season....
31 December 2023, by and

Faced with dwindling bee colonies, scientists are arming queens with robots and smart hives

By Farshad Arvin, Martin Stefanec, and Tomas Krajnik Be it the news or the dwindling number of creatures hitting your windscreens, it will not have evaded you that the insect world in bad shape. ...
31 December 2023, by

Robot Talk Episode 63 – Ayse Kucukyilmaz

In the latest episode of the Robot Talk podcast, Claire chatted to Ayse Kucukyilmaz from the University of Nottingham about collaboration, conflict and failure in human-robot interactions.
31 December 2023, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association