Robohub.org
 

Real-time heart beat simulator visualizes pulsation and disease on a Laptop PC

by
05 November 2012



share this:

 

12-0203-r

This simulator can represent the complex pulsation of the heart. It is being developed by a group including members from National Cerebral and Cardiovascular Center and Riken.

Until now, simulating heart pulsation has required huge amounts of computing, done by supercomputers or offline. But this new system makes it possible to visualize heart pulsation on a notebook PC in real time, by applying computer graphics technology.

“Previously, simulation methods were based on mechanics. Our method is completely new because we use technology called shape matching, based on shape constraints. To put it simply, we divide a heart model into 7,000 parts, and make each part contract independently. The main point about this method is that it calculates the shape of the heart overall by minimizing contradictions between the contracted parts.”

“The 3D heart model can be created by extracting regions from a patient’s CT scan. The course of the cardiac muscle fibers has already been designed. The timing of contraction can be specified through this graph. Normally, the atrium contracts first, then the ventricles.”

Because the heart model runs in real time, it’s possible to deform the heart by applying tension, and to observe cross-sections. Additionally, heart attacks can be simulated by stopping the motion and painting a region. This also makes it possible to create virtual heart disease.

“First of all, we’d like to utilize this simulator in clinical practice. Its primary purpose is to help physicians and patients communicate with each other. Another purpose is to help train physicians. We’d also like to use it simply for elementary education.”

The remaining issues that need to be overcome include, reducing the complexity of creating individual patients heart models, as well as finding ways to handle complex patterns such as ventricular fibrillation.



tags: , ,


DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.
DigInfo TV is a Tokyo-based online video news platform dedicated to producing original coverage of cutting edge technology, research and products from Japan.





Related posts :



Robots that act collectively: when, and how? – #ICRA2022 Day 4 interview with K. Petersen, M. A. Olivares Mendez, and T. Kaiser (+ video digest)

In day 4 at the IEEE International Conference on Automation and Robotics (ICRA), I met three researchers that are working to advance collective robotics.
28 May 2022, by

Connecting robots and people – #ICRA2022 Day 3 interview with Kate Ladenheim (+ video digest)

In day 3 at the IEEE International Conference on Automation and Robotics (ICRA), I met a presenter in ICRA 2022´s Robotics and Art exhibition "Expressive and Meditative Machines for Imaging New Futures With Technology".
26 May 2022, by

The art of making robots – #ICRA2022 Day 2 interviews and video digest

In day 2 at the IEEE International Conference on Automation and Robotics (ICRA), I met Bryan Webb, President of Clearpath, and Carlos Vivas, Business Manager of PAL Robotics, and I asked them about their thoughts on the art of making robots.
25 May 2022, by
ep.

355

podcast

SLAM fused with Satellite Imagery #ICRA2022, with John McConnell

John McConnell discusses the research presented at ICRA 2022 to reduce drift in SLAM algorithms by incorporating overhead satellite imagery.
25 May 2022, by

#ICRA2022, the great robotics scicommer – Day 1 video digest

Here I bring you some of the highlights in video of day 1 at the IEEE International Conference on Automation and Robotics (ICRA).
24 May 2022, by

Dan O’Mara: Turning Robotics Education on its Head | Sense Think Act Podcast #19

In this episode, Audrow Nash speaks to Dan O'Mara, who is the founder and COO of Circuit Launch and Mechlabs. Circuit Launch is a space for hardware entrepreneurs to work in Oakland, California, and M...





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association