Robohub.org
 

RFID-based global positioning


by
14 August 2010



share this:

Having a robot figure out its global position is required in many real world applications, it’s also one of the biggest challenges in robotics.

The easiest approach is to have a robot blindly keep track of its movements (odometry) from a known starting position. Odometry alone however quickly results in an add-up of errors that make the localization unusable.

To help the robot along the way, Boccadoro et al. propose to place passive Radio-Frequency IDentification (RFID) tags in known positions in the environment. These smart tags are interesting because they are typically low cost and require no energy to function. Robots equipped with RFID readers can detect a tag within a 1m range, although with a lot of noise. Algorithms are then needed to combine the robot’s sensors, in this case odometry, with the noisy RFID readings to precisely estimate its global position.

For this purpose, two types of Kalman Filters are implemented and compared to a Particle Filter method that typically has much larger computational cost. Experiments were conducted using a Pioneer P3-DX driving around a corridor equipped with 6 RFID tags.

Results show that the first method is fast but imprecise when tags are sparse (figure left). The second approach has higher computation requirements than the first but is able to obtain estimates as good as the Particle Filter method with few tags (figure right).

The path reconstructed through the various methods proposed: a red line is used to represent the estimation of the second loop of the robot path, the green line is used for the last loop; the line in blue is ground truth.

In the future, authors hope to investigate the optimal placement of RFID tags to achieve even better position estimates.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.

CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence