Robohub.org
 

RFID-based global positioning

by
14 August 2010



share this:

Having a robot figure out its global position is required in many real world applications, it’s also one of the biggest challenges in robotics.

The easiest approach is to have a robot blindly keep track of its movements (odometry) from a known starting position. Odometry alone however quickly results in an add-up of errors that make the localization unusable.

To help the robot along the way, Boccadoro et al. propose to place passive Radio-Frequency IDentification (RFID) tags in known positions in the environment. These smart tags are interesting because they are typically low cost and require no energy to function. Robots equipped with RFID readers can detect a tag within a 1m range, although with a lot of noise. Algorithms are then needed to combine the robot’s sensors, in this case odometry, with the noisy RFID readings to precisely estimate its global position.

For this purpose, two types of Kalman Filters are implemented and compared to a Particle Filter method that typically has much larger computational cost. Experiments were conducted using a Pioneer P3-DX driving around a corridor equipped with 6 RFID tags.

Results show that the first method is fast but imprecise when tags are sparse (figure left). The second approach has higher computation requirements than the first but is able to obtain estimates as good as the Particle Filter method with few tags (figure right).

The path reconstructed through the various methods proposed: a red line is used to represent the estimation of the second loop of the robot path, the green line is used for the last loop; the line in blue is ground truth.

In the future, authors hope to investigate the optimal placement of RFID tags to achieve even better position estimates.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Our future could be full of undying, self-repairing robots – here’s how

Could it be that future AI systems will need robotic “bodies” to interact with the world? If so, will nightmarish ideas like the self-repairing, shape-shifting T-1000 robot from the Terminator 2 movie come to fruition? And could a robot be created that could “live” forever?
01 February 2023, by

Sensing with purpose

Fadel Adib uses wireless technologies to sense the world in new ways, taking aim at sweeping problems such as food insecurity, climate change, and access to health care.
29 January 2023, by

Robot Talk Episode 34 – Interview with Sabine Hauert

In this week's episode of the Robot Talk podcast, host Claire Asher chatted to Dr Sabine Hauert from the University of Bristol all about swarm robotics, nanorobots, and environmental monitoring.
28 January 2023, by

Special drone collects environmental DNA from trees

Researchers at ETH Zurich and the Swiss Federal research institute WSL have developed a flying device that can land on tree branches to take samples. This opens up a new dimension for scientists previously reserved for biodiversity researchers.
27 January 2023, by

The robots of CES 2023

Robots were on the main expo floor at CES this year, and these weren’t just cool robots for marketing purposes. I’ve been tracking robots at CES for more than 10 years, watching the transition from robot toys to real robots.
25 January 2023, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association