Robohub.org
 

Robot coordination for fire response


by
12 October 2010



share this:

Robots can work together to cooperatively execute tasks much faster than a single robot. In the scenario proposed by Jones et al. fire trucks are sent out to extinguish fires caused by a large-scale disaster. Because of the disaster, roads are blocked by debris that can only be cleared by bulldozer robots. Coordination in this scenario amounts to figuring out which routes the fire trucks should take to extinguish which fires and how bulldozers should be used to clear the way. Good coordination leads to a maximum number of fires being extinguished as fast as possible.

Allocating the tasks to the different agents (fire trucks and bulldozers) over time is challenging because of the explosion in possible combinations of agents, tasks and routes. To address this challenge, Jones et al. propose two approaches. In the first, agents bid on groups of tasks to be accomplished over time and auctions are then held to distribute the tasks. The second approach searches over all possible solutions by using a genetic algorithm.

Experiments in simulation show that the genetic algorithm, if given enough time, results in better system performance than auction-based systems that tend to result in local minima. Higher performance however comes at the price of orders of magnitude increase in processing. Because both approaches are able to achieve good solutions, the tradeoff between performance and execution time will need to be considered on a case by case basis.

Two examples of auction-based approaches are shown below. On the left side, only a single fire is assigned per fire truck at a time, while the right side approach allows several fires to be assigned at a time. Result show that assigning a set of tasks to accomplish over a period of time leads to better performance (green bar) than assigning a single task at a time (time-extended coordination).




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

Human-robot interaction design retreat

  25 Nov 2025
Find out more about an event exploring design for human-robot interaction.

Robot Talk Episode 134 – Robotics as a hobby, with Kevin McAleer

  21 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kevin McAleer from kevsrobots about how to get started building robots at home.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence