Robohub.org
 

Robot formations that avoid obstacles


by
13 September 2010



share this:

In formations, robots are positioned at a precise distance and sometimes angle from one another to form shapes. Robots that advance in formations can share communication, computation and sensing resources and work together to explore the world or transport objects.

Ideally, robot formations should be able to advance in a common direction while avoiding obstacles in their environment. Addressing this challenge, Monteiro et al. propose that each robot follows a leader. The idea is that a leader who knows where to go is followed by robots that remain at a fixed angle and distance from it. These followers can then serve as leaders for other robots. As a result, each robot is directly or indirectly following a single leader while maintaining precise angle and distance to one robot in the formation as shown in the image below. “Who follows who?” is described by a matrix sent to the robots. The formation can therefore be changed by sending different formation matrices to the robots.

Hexagon formation. Robots R2, R6 and R3 follow R1. Robot R4 follows R2 and R5 follows R4.

To maintain the formation while avoiding obstacles, followers use an attractor dynamics approach that changes their speed and heading. Simply put, followers are attracted to positions at correct distance and angle from their leader while being repulsed by obstacles. Using this technique formations can be formed from any starting position, can split to avoid obstacles and reassemble seamlessly.

Results in simulation and reality show robots can move in formations through cluttered environments with moving obstacles, replace leaders that have failed, and switch formations. In the video below three Khepera I robots are successful in switching between line, triangle and column formations and avoiding obstacles. In these experiments, robots needed to communicate their position to other robots in the formation. A later robot developed uses a camera to alleviate the need to communicate since robots can directly sense where their neighbors are.

In the future, Monteiro et al. plan to investigate how to design formation matrices at runtime depending on the needs of a mission and avoid problems due to robots not seeing each other.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.

Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence