Robohub.org
 

Robot formations that avoid obstacles


by
13 September 2010



share this:

In formations, robots are positioned at a precise distance and sometimes angle from one another to form shapes. Robots that advance in formations can share communication, computation and sensing resources and work together to explore the world or transport objects.

Ideally, robot formations should be able to advance in a common direction while avoiding obstacles in their environment. Addressing this challenge, Monteiro et al. propose that each robot follows a leader. The idea is that a leader who knows where to go is followed by robots that remain at a fixed angle and distance from it. These followers can then serve as leaders for other robots. As a result, each robot is directly or indirectly following a single leader while maintaining precise angle and distance to one robot in the formation as shown in the image below. “Who follows who?” is described by a matrix sent to the robots. The formation can therefore be changed by sending different formation matrices to the robots.

Hexagon formation. Robots R2, R6 and R3 follow R1. Robot R4 follows R2 and R5 follows R4.

To maintain the formation while avoiding obstacles, followers use an attractor dynamics approach that changes their speed and heading. Simply put, followers are attracted to positions at correct distance and angle from their leader while being repulsed by obstacles. Using this technique formations can be formed from any starting position, can split to avoid obstacles and reassemble seamlessly.

Results in simulation and reality show robots can move in formations through cluttered environments with moving obstacles, replace leaders that have failed, and switch formations. In the video below three Khepera I robots are successful in switching between line, triangle and column formations and avoiding obstacles. In these experiments, robots needed to communicate their position to other robots in the formation. A later robot developed uses a camera to alleviate the need to communicate since robots can directly sense where their neighbors are.

In the future, Monteiro et al. plan to investigate how to design formation matrices at runtime depending on the needs of a mission and avoid problems due to robots not seeing each other.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.

AIhub coffee corner: Agentic AI

  15 Aug 2025
The AIhub coffee corner captures the musings of AI experts over a short conversation.

Interview with Kate Candon: Leveraging explicit and implicit feedback in human-robot interactions

and   25 Jul 2025
Hear from PhD student Kate about her work on human-robot interactions.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence