Robohub.org
 

Robot swarms neutralize harmful Byzantine robots using a blockchain-based token economy


by
20 July 2023



share this:

Dr. Volker Strobel, postdoctoral researcher; Prof. Marco Dorigo, research director of the F.R.S.-FNRS; and Alexandre Pacheco, doctoral student. The researchers from the Université Libre de Bruxelles, Belgium. Credit: IRIDIA, Université Libre de Bruxelles

In a new study, we demonstrate the potential of blockchain technology, known from cryptocurrencies such as Bitcoin and Ethereum, to secure the coordination of robot swarms. In experiments conducted with both real and simulated robots, we show how blockchain technology enables a robot swarm to neutralize harmful robots without human intervention, thus enabling the deployment of autonomous and safe robot swarms.

Robot swarms are multi-robot systems that consist of many robots that collaborate in order to perform a task. They do not need a central control unit but the collective behavior of the swarm is rather a result of local interactions among robots. Thanks to this decentralization, robot swarms can work independently of external infrastructure, such as the Internet. This makes them particularly suitable for applications in a wide range of different environments such as underground, underwater, at sea, and in space.

Even though current swarm robotics applications are exclusively demonstrated in research environments, experts anticipate that in the non-distant future, robot swarms will support us in our everyday life. Robot swarms might perform environmental monitoring, underwater exploration, infrastructure inspection, and waste management—and thus make significant contributions to the transition into a fossil-free future with low pollution and high quality of life. In some of these activities, robot swarms will even outperform humans, leading to higher-quality results while ensuring our safety.

Once robot swarms are deployed in the real world, however, it is very likely that some robots in a swarm will break down (for example, due to harsh weather conditions) or might even be hacked. Such robots will not behave as intended and are called “Byzantine” robots. Recent research has shown that the actions of a very small minority of such Byzantine robots in a swarm can—similar to a virus—spread in the swarm and thus break down the whole system. Although security issues are crucial for the real-world deployment of robot swarms, security research in swarm robotics is lacking behind.

In Internet networks, Byzantine users such as hackers, have been successfully prevented from manipulating information by using blockchain technology. Blockchain technology is the technology behind Bitcoin: it enables users to agree on `who owns what’ without requiring a trusted third party such as a bank. Originally, blockchain technology was only meant to exchange units of a digital currency, such as Bitcoin. However, some years after Bitcoin’s release, blockchain-based smart contracts were introduced by the Ethereum framework: these smart contracts are programming code executed in a blockchain network. As no one can manipulate or stop this code, smart contracts enable “code is law”: contracts are automatically executed and do not need a trusted third party, such as a court, to be enforced.

So far, it was not clear whether large robot swarms could be controlled using blockchain and smart contracts. To address this open question, we presented a comprehensive study with both real and simulated robots in a collective-sensing scenario: the goal of the robot swarm is to provide an estimate of an environmental feature. To do so the robots need to sample the environment and then agree on the feature value. In our experiments, each robot is a member of a blockchain network maintained by the robots themselves. The robots send their estimates of environmental features to a smart contract that is shared by all the robots in the swarm. These estimates are aggregated by the smart contract that uses them to generate the requested estimate of the environmental feature. In this smart contract, we implemented economic mechanisms that ensure that good (non-Byzantine) robots are rewarded for sending useful information, whereas harmful Byzantine robots are penalized. The resulting robot economy prevents the Byzantine robots from participating in the swarm activities and influencing the swarm behavior.

Adding a blockchain to a robot swarm increases the robots’ computational requirements, such as CPU, RAM, and disk space usage. In fact, it was an open question whether running blockchain software on real robot swarms was possible at all. Our experiments have demonstrated that this is indeed possible as the computational requirements are manageable: the additional CPU, RAM, and disk space usage have a minor impact on the robot performance. This successful integration of blockchain technology into robot swarms paves the way for a wide range of secure robotic applications. To favor these future developments, we have released our software frameworks as open-source.




Université Libre de Bruxelles





Related posts :



Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.

Robot Talk Episode 122 – Bio-inspired flying robots, with Jane Pauline Ramos Ramirez

  23 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jane Pauline Ramos Ramirez from Delft University of Technology about drones that can move on land and in the air.

Robot Talk Episode 121 – Adaptable robots for the home, with Lerrel Pinto

  16 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Lerrel Pinto from New York University about using machine learning to train robots to adapt to new environments.

What’s coming up at #ICRA2025?

  16 May 2025
Find out what's in store at the IEEE International Conference on Robotics & Automation, which will take place from 19-23 May.

Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence