Robohub.org
 

Robotic chemistry

by
18 October 2010



share this:

Stochastic self-assembly is a hot topic in chemistry and biology. The general idea is that if you pour building blocks into a recipient and stir, your blocks will eventually react with one another to form new structures. Such self-assembly reactions can be regulated to make sure there is always a desired amount of assembled structures in the mix (tunable reaction network). This can be seen as analogous to the use of enzymes to regulate metabolic reactions in the body.

To understand how such reactions work, Napp et al. built a robotic testbed that can emulate stochastic self-assembly. Their amazing setup presented in the self-explanatory video below uses an air hockey table on which robots float around randomly. There are two types of building blocks in the system, that can self-assemble to form two-piece structures (dimers). A robot is then added to the system to regulate the reaction by splitting assembled structures apart. This robot uses energy each time it disassembles a structure, and needs some time to recharge thanks to solar panels before it can break any new structures. Conveniently, by tuning the speed at which these robots recharge it is possible to modulate the speed at which structures are broken and therefore regulate the amount of assembled structures present in the system over time!



In the future, such systems could be imagined to build a large variety of complex structures, including self-assembling miniature robots.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Looking beyond “technology for technology’s sake”

Whether building robots or helping to lead the National Society of Black Engineers, senior Austen Roberson is thinking about the social implications of his field.
08 December 2022, by

Estimating manipulation intentions to ease teleoperation

Introducing an intention estimation model that relies on both gaze and motion features.
06 December 2022, by and

Countering Luddite politicians with life (and cost) saving machines

Beyond aerial tricks, drones are now being deployed in novel ways to fill the labor gap of menial jobs that have not returned since the pandemic.
04 December 2022, by

Call for robot holiday videos 2022

That’s right! You better not run, you better not hide, you better watch out for brand new robot holiday videos on Robohub!
02 December 2022, by

The Utah Bionic Leg: A motorized prosthetic for lower-limb amputees

Lenzi’s Utah Bionic Leg uses motors, processors, and advanced artificial intelligence that all work together to give amputees more power to walk, stand-up, sit-down, and ascend and descend stairs and ramps.

Touch sensing: An important tool for mobile robot navigation

Proximal sensing often is a blind spot for most long range sensors such as cameras and lidars for which touch sensors could serve as a complementary modality.
29 November 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association