Robohub.org
 

Robotic chemistry


by
18 October 2010



share this:

Stochastic self-assembly is a hot topic in chemistry and biology. The general idea is that if you pour building blocks into a recipient and stir, your blocks will eventually react with one another to form new structures. Such self-assembly reactions can be regulated to make sure there is always a desired amount of assembled structures in the mix (tunable reaction network). This can be seen as analogous to the use of enzymes to regulate metabolic reactions in the body.

To understand how such reactions work, Napp et al. built a robotic testbed that can emulate stochastic self-assembly. Their amazing setup presented in the self-explanatory video below uses an air hockey table on which robots float around randomly. There are two types of building blocks in the system, that can self-assemble to form two-piece structures (dimers). A robot is then added to the system to regulate the reaction by splitting assembled structures apart. This robot uses energy each time it disassembles a structure, and needs some time to recharge thanks to solar panels before it can break any new structures. Conveniently, by tuning the speed at which these robots recharge it is possible to modulate the speed at which structures are broken and therefore regulate the amount of assembled structures present in the system over time!



In the future, such systems could be imagined to build a large variety of complex structures, including self-assembling miniature robots.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 113 – Soft robotic hands, with Kaspar Althoefer

  14 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kaspar Althoefer from Queen Mary University of London about soft robotic manipulators for healthcare and manufacturing.

Robot Talk Episode 112 – Getting creative with robotics, with Vali Lalioti

  07 Mar 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Vali Lalioti from the University of the Arts London about how art, culture and robotics interact.

Robot Talk Episode 111 – Robots for climate action, with Patrick Meier

  28 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Patrick Meier from the Climate Robotics Network about how robots can help scale action on climate change.

Robot Talk Episode 110 – Designing ethical robots, with Catherine Menon

  21 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Catherine Menon from the University of Hertfordshire about designing home assistance robots with ethics in mind.

Robot Talk Episode 109 – Building robots at home, with Dan Nicholson

  14 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Dan Nicholson from MakerForge.tech about creating open source robotics projects you can do at home.

Robot Talk Episode 108 – Giving robots the sense of touch, with Anuradha Ranasinghe

  07 Feb 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anuradha Ranasinghe from Liverpool Hope University about haptic sensors for wearable tech and robotics.

Robot Talk Episode 107 – Animal-inspired robot movement, with Robert Siddall

  31 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Robert Siddall from the University of Surrey about novel robot designs inspired by the way real animals move.

Robot Talk Episode 106 – The future of intelligent systems, with Didem Gurdur Broo

  24 Jan 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Didem Gurdur Broo from Uppsala University about how to shape the future of robotics, autonomous vehicles, and industrial automation.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association