Robohub.org
 

ROS 101: Drive a Grizzly!

by
03 July 2014



share this:
ROS101_logo

So you have had a taste of driving a virtual Husky in our previous tutorial, but now want to try something a little bigger? How about 2000 lbs bigger?

Read on to learn how to drive a (virtual) Grizzly, Clearpath Robotic’s largest and meanest platform. If you are totally new to ROS, be sure to check out our tutorial series starting here and the ROS Cheat Sheet. Here is your next ROS 101 dose.

An updated version of the Learn_ROS disk is available here:

https://s3.amazonaws.com/CPR_PUBLIC/LEARN_ROS/Learn_ROS-disk1.vmdk
https://s3.amazonaws.com/CPR_PUBLIC/LEARN_ROS/Learn_ROS.ovf

Login (username): user
Password: learn

Updating the Virtual Machine

Open a terminal window (Ctrl + Alt + T), and enter the following:

sudo apt-get update
sudo apt-get install ros-hydro-grizzly-simulator 
sudo apt-get install ros-hydro-grizzly-desktop 
sudo apt-get install ros-hydro-grizzly-navigation

Running a virtual Grizzly

Open a terminal window, and enter:

roslaunch grizzly_gazebo grizzly_empty_world.launch

Open another terminal window, and enter:

roslaunch grizzly_viz view_robot.launch

You should be given two windows, both showing a yellow, rugged robot (the Grizzly!). The left one shown is Gazebo. This is where we get a realistic simulation of our robot, including wheel slippage, skidding, and inertia. We can add objects to this simulation, or even entire maps of real places.

Grizzly_gazebo-2
Grizzly RUV in simulation

The right window is RViz. This tool allows us to see sensor data from a robot, and give it commands (in a future post). RViz is a more simplified simulation in the interest of speed.

Grizzly_rviz
RViz – sensor data

We can now command the robot to go forwards. Open a terminal window, and enter:

rostopic pub /cmd_vel geometry_msgs/Twist -r 100 '[0.5,0,0]' '[0,0,0]'

In the above command, we publish to the cmd_vel topic, of topic type geometry_msgs/Twist, at a rate of 100Hz. The data we publish tells the simulated Grizzly to go forwards at 0.5m/s, without any rotation. You should see your Grizzly move forwards. In the gazebo window, you might also notice simulated wheel slip, and skidding. Enjoy and stay tuned for more soon!

 

See all the ROS101 tutorials here. If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , ,


Clearpath Robotics Clearpath Robotics is dedicated to automating the world's dullest, dirtiest and deadliest jobs through mobile robotic solutions.
Clearpath Robotics Clearpath Robotics is dedicated to automating the world's dullest, dirtiest and deadliest jobs through mobile robotic solutions.





Related posts :



Breaking through the mucus barrier

A capsule that tunnels through mucus in the GI tract could be used to orally administer large protein drugs such as insulin.
02 October 2022, by

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and

Have a say on these robotics solutions before they enter the market!

We have gathered robots which are being developed right now or have just entered the market. We have set these up in a survey style consultation.
24 September 2022, by

Shelf-stocking robots with independent movement

A robot that helps store employees by moving independently through the supermarket and shelving products. According to cognitive robotics researcher Carlos Hernández Corbato, this may be possible in the future. If we engineer the unexpected.
23 September 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association