Sergey Levine: Deep Robotic Learning | CMU RI Seminar
-->Abstract: “Deep learning methods have provided us with remarkably powerful, flexible, and robust solutions in a wide range of passive perception areas: computer vision, speech recognition, and natural language processing. However, active decision making domains such as robotic control present a number of additional challenges, standard supervised learning methods do not extend readily to robotic decision making, where supervision is difficult to obtain. In this talk, I will discuss experimental results that hint at the potential of deep learning to transform robotic decision making and control, present a number of algorithms and models that can allow us to combine expressive, high-capacity deep models with reinforcement learning and optimal control, and describe some of our recent work on scaling up robotic learning through collective learning with multiple robots.”
January 18, 2021
Need help spreading the word?
Join the Robohub crowdfunding page and increase the visibility of your campaign