Robohub.org
 

Simple robots, complex behaviors: A control systems perspective on Braitenberg Vehicles

by
03 December 2015



share this:

Braitenberg_vehicles_Control_SystemsIn this lecture series, controls expert Brian Douglas walks you through key concepts in control system theory. Focused on making control theory accessible and intuitive, this series is for anyone who wants to relate control concepts to robotic applications in the real world. This episode uses Braitenberg Vehicles to explore how simple structures can generate complex animal behavior.

“When we analyze a mechanism we tend to over estimate its complexity.” – Valentino Braitenberg – Vehicles: Experiments in Synthetic Psychology

Think back to the last time you saw a cockroach scurry into hiding when you turned on the lights. Perhaps your first thought was to jump on the closest chair and get your feet as far away as possible. But then your second thought, as you watch the cockroach actively seek the shade, might be that it was intentionally trying to hide from you. Or even worse, if it started running toward you that it was coming to attack or scare you off!

Now imagine you want to build a robot that could simulate the behavior of the cockroach. How would you approach its design? It’s obvious that you’d need some kind of light sensor so your robot could tell the bright areas from the shade. But you’d probably also want a camera and image recognition software so it could recognize people or any other object that it deemed a threat. Lastly, once it understands the risk it is dealing with you might program in some fight or flight logic that would tell your robot whether this was a run and hide situation or a stand your ground and attack situation. This would be a complex robot and building complex robots can be hard.

But there is a simpler way to generate the behavior of the cockroach. A way that, as it turns out, might actually be closer to how the neurons are structured and interact inside the roaches brain. And we can demonstrate this method using Braitenberg Vehicles.

Valentino Braitenberg was a neuroscientist and cyberneticist who used very simple electro-mechanical vehicles as a way to communicate how animal psychology could have evolved. His thought exercises, generally referred to as Braitenberg Vehicles, begin as a single sensor connected directly to a single actuator and evolve through multiple iterations into vehicles that can remember, have the ability to predict, and develop an ego.

In this video, we develop a few of these vehicles and use them to explore how simple structures can generate complex animal behavior.


If you liked this lecture, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.

 



tags: , , , , ,


Brian Douglas Brian Douglas is the Attitude Determination and Controls Lead at Planetary Resources, Inc. , he is also the content creator of the Control System Lectures YouTube channel.
Brian Douglas Brian Douglas is the Attitude Determination and Controls Lead at Planetary Resources, Inc. , he is also the content creator of the Control System Lectures YouTube channel.





Related posts :



#ICRA2022 networking events

This year at ICRA there were great number of opportunities to involve and engage as well including networking events.
04 July 2022, by

ROS Awards 2022 results

The intention of these awards is to express recognition for contributions to the ROS community and the development of the ROS-based robot industry, and to help those contributions gain awareness.
02 July 2022, by
ep.

357

podcast

Origin Story of the OAK-D, with Brandon Gilles

Brandon Gilles, the founder of Luxonis and maker of the OAK-D, describes the journey and the flexibility of the OAK-D line of products
01 July 2022, by

The one-wheel Cubli

Researchers Matthias Hofer, Michael Muehlebach and Raffaello D’Andrea have developed the one-wheel Cubli, a three-dimensional pendulum system that can balance on its pivot using a single reaction wheel. How is it possible to stabilize the two tilt angles of the system with only a single reaction wheel?
30 June 2022, by and

At the forefront of building with biology

Raman is, as she puts it, “a mechanical engineer through and through.” Today, Ritu Raman leads the Raman Lab and is an Assistant Professor in the Department of Mechanical Engineering.
28 June 2022, by

Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association