Robohub.org
 

Smaller, smarter, softer robotic arm for endoscopic surgery

by
04 August 2017



share this:

SEM images of the hybrid soft pop-up actuators. The image has been colored in post processing to differentiate between the soft (in yellow) and the rigid structure (in blue). Credit: Wyss Institute at Harvard University

By Leah Burrows, SEAS Communications

Flexible endoscopes can snake through narrow passages to treat difficult to reach areas of the body. However, once they arrive at their target, these devices rely on rigid surgical tools to manipulate or remove tissue. These tools offer surgeons reduced dexterity and sensing, limiting the current therapeutic capabilities of the endoscope.

Now, researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a hybrid rigid-soft robotic arm for endoscopes with integrated sensing, flexibility, and multiple degrees of freedom. This arm — built using a manufacturing paradigm based on pop-up fabrication and soft lithography — lies flat on an endoscope until it arrives at the desired spot, then pops up to assist in surgical procedures.

The research is described in Advanced Materials Technologies.

Soft robots are so promising for surgical applications because they can match the stiffness of the body, meaning they won’t accidentally puncture or tear tissue. However, at small scales, soft materials cannot generate enough force to perform surgical tasks.

“At the millimeter scale, a soft device becomes so soft that it can’t damage tissue but it also can’t manipulate the tissue in any meaningful way,” said Tommaso Ranzani, Ph.D., a Postdoctoral Fellow at the Wyss Institute and SEAS and coauthor of the paper. “That limits the application of soft microsystems for performing therapy. The question is, how can we develop soft robots that are still able to generate the necessary forces without compromising safety.”

Inspired by biology, the team developed a hybrid model that used a rigid skeleton surrounded by soft materials. The manufacturing method drew on previous work in origami-inspired, pop-up fabrication developed by Robert Wood, Ph.D., who coauthored the paper and is a Core Faculty Member of the Wyss Institute and the Charles River Professor of Engineering and Applied Sciences at SEAS.

Soft pop-up arm performing tissue counter-traction during an ex-vivo test on a porcine stomach. Credit: Harvard University

Previous pop-up manufacturing techniques — such as those used with the RoboBees — rely on actuation methods that require high voltages or temperatures to operate, something that wouldn’t be safe in a surgical tool directly manipulating biological tissues and organs.

So, the team integrated soft actuators into the pop-up system.

“We found that by integrating soft fluidic microactuators into the rigid pop-up structures, we could create soft pop-up mechanisms that increased the performance of the actuators in terms of the force output and the predictability and controllability of the motion,” said Sheila Russo, Ph.D., Postdoctoral Fellow at the Wyss Institute and SEAS and lead author of the paper. “The idea behind this technology is basically to obtain the best of both worlds by combining soft robotic technologies with origami-inspired rigid structures. Using this fabrication method, we were able to design a device that can lie flat when the endoscope is navigating to the surgical area, and when the surgeon reaches the area they want to operate on, they can deploy a soft system that can safely and effectively interact with tissue.”

The soft actuators are powered by water. They are connected to the rigid components with an irreversible chemical bond, without the need of any adhesive. The team demonstrated the integration of simple capacitive sensing that can be used to measure forces applied to the tissue and to give the surgeon a sense of where the arm is and how it’s moving. The fabrication method allows for bulk manufacturing, which is important for medical devices, and allows for increased levels of complexity for more sensing or actuation. Furthermore, all materials used are biocompatible.

The arm is also equipped with a suction cup — inspired by octopus tentacles — to safely interact with tissue. The team tested the device ex vivo, simulating a complicated endoscopic procedure on pig tissue. The arm successfully manipulated the tissue safely.

“The ability to seamlessly integrate gentle yet effective actuation into millimeter-scale deployable mechanisms fits naturally with a host of surgical procedures,” said Wood. “We are focused on some of the more challenging endoscopic techniques where tool dexterity and sensor feedback are at a premium and can potentially make the difference between success and failure.”


Multi-articulated soft pop-up robotic arm. Concept of the system (left): An endoscope navigating in the GI tract and detail of the arm mounted at the tip of the endoscope. Soft pop-up arm (right) performing tissue counter-traction during an ex-vivo test on a porcine stomach. Credit: Harvard University

The researchers demonstrated that the device could be scaled down to 1 millimeter, which would allow it to be used in even tighter endoscopic procedures, such as in lungs or the brain.

Next, the researchers hope to test the device in vivo.

“Our technology paves the way to design and develop smaller, smarter, softer robots for biomedical applications,” said Russo.

The paper was coauthored by Conor Walsh, Ph.D., a Core Faculty Member of the Wyss Institute and the John L. Loeb Associate Professor of Engineering and Applied Sciences at SEAS.

The research was supported by the DARPA “Atoms to Product” program and the Wyss Institute for Biologically Inspired Engineering.

Publication: Advanced Materials Technologies: An Additive Millimeter-Scale Fabrication Method for Soft Biocompatible Actuators and Sensors



tags: ,


Wyss Institute uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world.
Wyss Institute uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world.





Related posts :



ep.

340

podcast

NVIDIA and ROS Teaming Up To Accelerate Robotics Development, with Amit Goel

Amit Goel, Director of Product Management for Autonomous Machines at NVIDIA, discusses the new collaboration between Open Robotics and NVIDIA. The collaboration will dramatically improve the way ROS and NVIDIA's line of products such as Isaac SIM and the Jetson line of embedded boards operate together.
23 October 2021, by

One giant leap for the mini cheetah

A new control system, demonstrated using MIT’s robotic mini cheetah, enables four-legged robots to jump across uneven terrain in real-time.
23 October 2021, by

Robotics Today latest talks – Raia Hadsell (DeepMind), Koushil Sreenath (UC Berkeley) and Antonio Bicchi (Istituto Italiano di Tecnologia)

Robotics Today held three more online talks since we published the one from Amanda Prorok (Learning to Communicate in Multi-Agent Systems). In this post we bring you the last talks that Robotics Today...
21 October 2021, by and

Sense Think Act Pocast: Erik Schluntz

In this episode, Audrow Nash interviews Erik Schluntz, co-founder and CTO of Cobalt Robotics, which makes a security guard robot. Erik speaks about how their robot handles elevators, how they have hum...
19 October 2021, by and

A robot that finds lost items

Researchers at MIT have created RFusion, a robotic arm with a camera and radio frequency (RF) antenna attached to its gripper, that fuses signals from the antenna with visual input from the camera to locate and retrieve an item, even if the item is buried under a pile and completely out of view.
18 October 2021, by

Robohub gets a fresh look

If you visited Robohub this week, you may have spotted a big change: how this blog looks now! On Tuesday (coinciding with Ada Lovelace Day and our ‘50 women in robotics that you need to know about‘ by chance), Robohub got a massive modernisation on its look by our technical director Ioannis K. Erripis and his team.
17 October 2021, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association