Robohub.org
 

Social learning


by
29 August 2010



share this:

Robots are portrayed as tomorrows helpers, be it in schools, hospitals, workplaces or homes. Unfortunately, such robots won’t be truly useful out-of-the-box because of the complexity of real-world environments and tasks. Instead, they will need to learn how to interact with objects in their environment to produce a desired outcome (affordance learning).

For this purpose, robots can explore the world while using machine learning techniques to update their knowledge. However, the learning process is sometimes saturated with examples of objects, actions and effects that won’t help the robot in its purpose.

In these cases, humans or other social partners can help direct robot learning (social learning). Most studies have focussed on scenarios where a teacher demonstrates how to correctly do a task. The robot then imitates the teacher by reproducing the same actions to achieve the same goals.

This approach, while being very efficient, typically means that the teacher needs to take time to train the robot, which can be burdensome. Furthermore, the robot might be so specialized for the demonstrated scenario that it will have trouble performing tasks that slightly differ. In addition, imitation only works when the teacher and robot have similar motion constraints and morphologies.

Luckily, humans and animals use a large variety of mechanisms to learn from social partners. Tapping into this reservoir, Cakmak et al. propose mechanisms where:
– robots interact with the same objects as the social partner (stimulus enhancement)
– robots try to achieve the same effect on the same object as the social partner (emulation)
– robots reproduce the same action as the social partner (mimicking)

Experiments performed in simulation compare stimulus enhancement, emulation, mimicking, imitation and non-social learning in a large variety of situations. The results summarize which mechanisms are better suited for which scenarios in a series of very useful guidelines. Demonstrations with two robots, Jimmy and Jane, were done to validate the study. Don’t miss the excellent video below for a summary of the article.

In the future, Cakmak et al. will focus on combining learning approaches to harness the full potential of this rich set of mechanisms.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

From sea to space, this robot is on a roll

  13 Oct 2025
Graduate students in the aptly named "RAD Lab" are working to improve RoboBall, the robot in an airbag.

Robot Talk Episode 128 – Making microrobots move, with Ali K. Hoshiar

  10 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Ali K. Hoshiar from University of Essex about how microrobots move and work together.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

and   08 Oct 2025
Zahra tells us more about her research on wearable technology.

Women in robotics you need to know about 2025

  06 Oct 2025
This global list celebrates women's impact across the robotics ecosystem and globe.

Robot Talk Episode 127 – Robots exploring other planets, with Frances Zhu

  03 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Frances Zhu from the Colorado School of Mines about intelligent robotic systems for space exploration.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence