Robohub.org
 

Stefanie Tellex: Learning Models of Language, Action and Perception for HRC | CMU RI Seminar


by
10 October 2016



share this:

Link to video of seminar on YouTube

Abstract: “Robots can act as a force multiplier for people, whether a robot assisting an astronaut with a repair on the International Space station, a UAV taking flight over our cities, or an autonomous vehicle driving through our streets. To achieve complex tasks, it is essential for robots to move beyond merely interacting with people and toward collaboration, so that one person can easily and flexibly work with many autonomous robots. The aim of my research program is to create autonomous robots that collaborate with people to meet their needs by learning decision-theoretic models for communication, action, and perception. Communication for collaboration requires models of language that map between sentences and aspects of the external world. My work enables a robot to learn compositional models for word meanings that allow a robot to explicitly reason and communicate about its own uncertainty, increasing the speed and accuracy of human-robot communication. Action for collaboration requires models that match how people think and talk, because people communicate about all aspects of a robot’s behavior, from low-level motion preferences (e.g., “Please fly up a few feet”) to high-level requests (e.g.,”Please inspect the building”). I am creating new methods for learning how to plan in very large, uncertain state-action spaces by using hierarchical abstraction. Perception for collaboration requires the robot to detect, localize, and manipulate the objects in its environment that are most important to its human collaborator. I am creating new methods for autonomously acquiring perceptual models in situ so the robot can perceive the objects most relevant to the human’s goals. My unified decision-theoretic framework supports data-driven training and robust, feedback-driven human-robot collaboration.”




John Payne





Related posts :



Human-robot interaction design retreat

  25 Nov 2025
Find out more about an event exploring design for human-robot interaction.

Robot Talk Episode 134 – Robotics as a hobby, with Kevin McAleer

  21 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Kevin McAleer from kevsrobots about how to get started building robots at home.

ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.

CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence