Robohub.org
 

Stefanie Tellex: Learning Models of Language, Action and Perception for HRC | CMU RI Seminar


by
10 October 2016



share this:

Link to video of seminar on YouTube

Abstract: “Robots can act as a force multiplier for people, whether a robot assisting an astronaut with a repair on the International Space station, a UAV taking flight over our cities, or an autonomous vehicle driving through our streets. To achieve complex tasks, it is essential for robots to move beyond merely interacting with people and toward collaboration, so that one person can easily and flexibly work with many autonomous robots. The aim of my research program is to create autonomous robots that collaborate with people to meet their needs by learning decision-theoretic models for communication, action, and perception. Communication for collaboration requires models of language that map between sentences and aspects of the external world. My work enables a robot to learn compositional models for word meanings that allow a robot to explicitly reason and communicate about its own uncertainty, increasing the speed and accuracy of human-robot communication. Action for collaboration requires models that match how people think and talk, because people communicate about all aspects of a robot’s behavior, from low-level motion preferences (e.g., “Please fly up a few feet”) to high-level requests (e.g.,”Please inspect the building”). I am creating new methods for learning how to plan in very large, uncertain state-action spaces by using hierarchical abstraction. Perception for collaboration requires the robot to detect, localize, and manipulate the objects in its environment that are most important to its human collaborator. I am creating new methods for autonomously acquiring perceptual models in situ so the robot can perceive the objects most relevant to the human’s goals. My unified decision-theoretic framework supports data-driven training and robust, feedback-driven human-robot collaboration.”




John Payne


Subscribe to Robohub newsletter on substack



Related posts :

Robot Talk Episode 145 – Robotics and automation in manufacturing, with Agata Suwala

  20 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Agata Suwala from the Manufacturing Technology Centre about leveraging robotics to make manufacturing systems more sustainable.

Reversible, detachable robotic hand redefines dexterity

  19 Feb 2026
A robotic hand developed at EPFL has dual-thumbed, reversible-palm design that can detach from its robotic ‘arm’ to reach and grasp multiple objects.

“Robot, make me a chair”

  17 Feb 2026
An AI-driven system lets users design and build simple, multicomponent objects by describing them with words.

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.



Robohub is supported by:


Subscribe to Robohub newsletter on substack




 















©2026.02 - Association for the Understanding of Artificial Intelligence