
In 21 countries across the globe, hundreds of people are preparing for Cybathlon 2016, where cutting edge robotic assistive technologies will help people with disabilities to compete in a series of races. This summer the Cybathlon practice session took place at the Swiss Arena in Kloten so that the teams could test out the courses. Watch the trailer for the rehearsal games!
Transcript included.
In this episode, Ron Vanderkley speaks with Dr. Lei Cui from Curtin University about his team’s work on 3D printable hand orthosis for rehabilitation, a task-oriented 4-DOF robotic device for upper-limb rehabilitation and a 3-DOF platform providing multi-directional perturbations for research into balance rehabilitation. They also discuss a high-speed untethered robotic fish for river monitoring and an amphibious robot for monitoring the Swan-Canning River System.
Full registration for the Cybathlon, a sporting event for disabled athletes using robotic assistive technologies is now open. The event will take place in Zurich, Switzerland on 8th October 2016.
Our 3D-printed prosthetic hand project has made the global finals of Intel’s Make it Wearable competition! Open Bionics came out of the Open Hand Project, where we developed a 3D printed robotic hand that would cost amputees less than $1,000.
The intersection of engineering and neuroscience: Dan Bacher on BrainGate and assistive technologies
Dan Bacher has always been fascinated by two things: electrical engineering and neuroscience. While these interests may seem divergent, the synthesis of them led him to Brown University’s BrainGate Group, where he is the Senior Research and Development Engineer. Says Bacher, “applying technology to the area of neuroscience just always fascinated me.”
Roboticists and doctors working in Switzerland and Italy have come together to develop a bionic hand that provides sensory feedback in real time, meaning that an amputee can be given back the ability to feel and modify grip like someone with a “real” hand. Using a combination of surgically implanted electrodes (connected at one end to the nervous system, and at the other end to sensors) and an algorithm to convert signals, the team has produced a hand that sends information back to the brain that is so detailed that the wearer could even tell the hardness of objects he was given to hold.
If the human brain is considered a computer, what does that mean for science and our lives? Could we repair damaged areas, replace damaged parts, or even upgrade our own minds? It might sound like little more than the stuff of science fiction, but with current advances in brain-machine interfaces, science fiction is fast becoming science fact.
The Dextrus hand is a robotic hand that can be put together for well under £650 ($1000) and offers much of the functionality of a human hand. Existing prosthetic hands are magnificent devices, capable of providing a large amount of dexterity using a simple control system. The problem is that they cost somewhere between £7,000-£70,000 ($11,000-$110,000) — far too much for most people to afford, especially in developing countries. Through the Open Hand Project, an open source project with the goal of making robotic prosthetic hands more accessible to amputees, a fully-functional prototype has already been developed. An indiegogo campaign is currently underway to provide funds for refining and testing the design.
January 18, 2021
Need help spreading the word?
Join the Robohub crowdfunding page and increase the visibility of your campaign