Robohub.org
 

Teaching motion primitives


by
01 December 2011



share this:

Finding ways to easily teach service robots new motions will be key to their integration in our everyday environments. Ideally, teaching a robot should be no different than teaching a human.

For example, to teach someone a new dance, you might first show them the basic steps. You will most likely mention motion primitives, such as “right foot forward” and not the actual position of all your body joints. The apprentice dancer will then try to imitate your steps. To refine dance moves, the teacher can physically correct the motion by pushing the elbow higher, straightening the back or guiding the steps. However, if the student has been taught to move forward with its right foot, and the teacher pushes in the opposite direction, the dancer will most likely freeze. This is due to the fact that refinements should fit within a certain region around the movement that the person expects (refinement tube). Over time, the dancer iteratively improves its movements, forgetting older clumsy moves along the way.

Following this exact idea, Lee et al. have been teaching motion primitives to the humanoid upper-body robot “Justin”. Experiments use the 19 joints of the arms (2 times 7 DOF), torso (3 DOF), and head (2 DOF). The framework shown in the schematic below, uses imitation learning followed by iterative kinesthetic motion refinements (physically guided corrections) within a refinement tube. Motion primitives are represented as a hidden Markov Model.

The authors hope that in the future, these algorithms can contribute to making humanoid robots, which are capable of autonomous long-term learning and adaptation.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory


Subscribe to Robohub newsletter on substack



Related posts :

Robot Talk Episode 145 – Robotics and automation in manufacturing, with Agata Suwala

  20 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Agata Suwala from the Manufacturing Technology Centre about leveraging robotics to make manufacturing systems more sustainable.

Reversible, detachable robotic hand redefines dexterity

  19 Feb 2026
A robotic hand developed at EPFL has dual-thumbed, reversible-palm design that can detach from its robotic ‘arm’ to reach and grasp multiple objects.

“Robot, make me a chair”

  17 Feb 2026
An AI-driven system lets users design and build simple, multicomponent objects by describing them with words.

Robot Talk Episode 144 – Robot trust in humans, with Samuele Vinanzi

  13 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Samuele Vinanzi from Sheffield Hallam University about how robots can tell whether to trust or distrust people.

How can robots acquire skills through interactions with the physical world? An interview with Jiaheng Hu

and   12 Feb 2026
Find out more about work published at the Conference on Robot Learning (CoRL).

Sven Koenig wins the 2026 ACM/SIGAI Autonomous Agents Research Award

  10 Feb 2026
Sven honoured for his work on AI planning and search.

Robot Talk Episode 143 – Robots for children, with Elmira Yadollahi

  06 Feb 2026
In the latest episode of the Robot Talk podcast, Claire chatted to Elmira Yadollahi from Lancaster University about how children interact with and relate to robots.

New frontiers in robotics at CES 2026

  03 Feb 2026
Henry Hickson reports on the exciting developments in robotics at Consumer Electronics Show 2026.



Robohub is supported by:


Subscribe to Robohub newsletter on substack




 















©2026.02 - Association for the Understanding of Artificial Intelligence