Robohub.org
 

Teaching motion primitives


by
01 December 2011



share this:

Finding ways to easily teach service robots new motions will be key to their integration in our everyday environments. Ideally, teaching a robot should be no different than teaching a human.

For example, to teach someone a new dance, you might first show them the basic steps. You will most likely mention motion primitives, such as “right foot forward” and not the actual position of all your body joints. The apprentice dancer will then try to imitate your steps. To refine dance moves, the teacher can physically correct the motion by pushing the elbow higher, straightening the back or guiding the steps. However, if the student has been taught to move forward with its right foot, and the teacher pushes in the opposite direction, the dancer will most likely freeze. This is due to the fact that refinements should fit within a certain region around the movement that the person expects (refinement tube). Over time, the dancer iteratively improves its movements, forgetting older clumsy moves along the way.

Following this exact idea, Lee et al. have been teaching motion primitives to the humanoid upper-body robot “Justin”. Experiments use the 19 joints of the arms (2 times 7 DOF), torso (3 DOF), and head (2 DOF). The framework shown in the schematic below, uses imitation learning followed by iterative kinesthetic motion refinements (physically guided corrections) within a refinement tube. Motion primitives are represented as a hidden Markov Model.

The authors hope that in the future, these algorithms can contribute to making humanoid robots, which are capable of autonomous long-term learning and adaptation.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.

Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence