Robohub.org
 

Teaching motion primitives


by
01 December 2011



share this:

Finding ways to easily teach service robots new motions will be key to their integration in our everyday environments. Ideally, teaching a robot should be no different than teaching a human.

For example, to teach someone a new dance, you might first show them the basic steps. You will most likely mention motion primitives, such as “right foot forward” and not the actual position of all your body joints. The apprentice dancer will then try to imitate your steps. To refine dance moves, the teacher can physically correct the motion by pushing the elbow higher, straightening the back or guiding the steps. However, if the student has been taught to move forward with its right foot, and the teacher pushes in the opposite direction, the dancer will most likely freeze. This is due to the fact that refinements should fit within a certain region around the movement that the person expects (refinement tube). Over time, the dancer iteratively improves its movements, forgetting older clumsy moves along the way.

Following this exact idea, Lee et al. have been teaching motion primitives to the humanoid upper-body robot “Justin”. Experiments use the 19 joints of the arms (2 times 7 DOF), torso (3 DOF), and head (2 DOF). The framework shown in the schematic below, uses imitation learning followed by iterative kinesthetic motion refinements (physically guided corrections) within a refinement tube. Motion primitives are represented as a hidden Markov Model.

The authors hope that in the future, these algorithms can contribute to making humanoid robots, which are capable of autonomous long-term learning and adaptation.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



ACM SIGAI Autonomous Agents Award 2026 open for nominations

  19 Nov 2025
Nominations are solicited for the 2026 ACM SIGAI Autonomous Agents Research Award.

Robot Talk Episode 133 – Creating sociable robot collaborators, with Heather Knight

  14 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Heather Knight from Oregon State University about applying methods from the performing arts to robotics.

CoRL2025 – RobustDexGrasp: dexterous robot hand grasping of nearly any object

  11 Nov 2025
A new reinforcement learning framework enables dexterous robot hands to grasp diverse objects with human-like robustness and adaptability—using only a single camera.

Robot Talk Episode 132 – Collaborating with industrial robots, with Anthony Jules

  07 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Anthony Jules from Robust.AI about their autonomous warehouse robots that work alongside humans.

Teaching robots to map large environments

  05 Nov 2025
A new approach could help a search-and-rescue robot navigate an unpredictable environment by rapidly generating an accurate map of its surroundings.

Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence