Robohub.org
 

Teaching motion primitives


by
01 December 2011



share this:

Finding ways to easily teach service robots new motions will be key to their integration in our everyday environments. Ideally, teaching a robot should be no different than teaching a human.

For example, to teach someone a new dance, you might first show them the basic steps. You will most likely mention motion primitives, such as “right foot forward” and not the actual position of all your body joints. The apprentice dancer will then try to imitate your steps. To refine dance moves, the teacher can physically correct the motion by pushing the elbow higher, straightening the back or guiding the steps. However, if the student has been taught to move forward with its right foot, and the teacher pushes in the opposite direction, the dancer will most likely freeze. This is due to the fact that refinements should fit within a certain region around the movement that the person expects (refinement tube). Over time, the dancer iteratively improves its movements, forgetting older clumsy moves along the way.

Following this exact idea, Lee et al. have been teaching motion primitives to the humanoid upper-body robot “Justin”. Experiments use the 19 joints of the arms (2 times 7 DOF), torso (3 DOF), and head (2 DOF). The framework shown in the schematic below, uses imitation learning followed by iterative kinesthetic motion refinements (physically guided corrections) within a refinement tube. Motion primitives are represented as a hidden Markov Model.

The authors hope that in the future, these algorithms can contribute to making humanoid robots, which are capable of autonomous long-term learning and adaptation.



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 131 – Empowering game-changing robotics research, with Edith-Clare Hall

  31 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Edith-Clare Hall from the Advanced Research and Invention Agency about accelerating scientific and technological breakthroughs.

A flexible lens controlled by light-activated artificial muscles promises to let soft machines see

  30 Oct 2025
Researchers have designed an adaptive lens made of soft, light-responsive, tissue-like materials.

Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence