Robohub.org
 

Teaching tykes to program robots

Kibo allows young tinkerers to build a robot using supplied modular components, personalize it with art designs and then program it to do their bidding using colored program blocks. Credit: DevTech research grouo, Tufts University

Kibo allows young tinkerers to build a robot using supplied modular components, personalize it with art designs and then program it to do their bidding using colored program blocks.
Credit: DevTech research grouo, Tufts University

Playgrounds are popular spaces for young children to play and learn. They promote exploration of the physical environment and motor and social skill development, allowing young children to be autonomous while developing core competencies.

Playpens, by contrast, corral children into safe, confined spaces. Although they are mostly riskfree, there is little opportunity for exploration and imaginative play.

From a developmental perspective, the playground promotes a sense of mastery, creativity, self-confidence, social awareness and open exploration, while the playpen hinders development of these traits.

“We’re trying to develop technologies to get us as close as we can to the metaphor of the playground,” said Marina Umaschi Bers, a professor of computer science and Child Development at Tufts University, director of DevTech research group and author of Designing Digital Experiences for Positive Youth Development: From Playpen to Playground.

Many are familiar with Bers through her work on ScratchJr – a programming language where even students who are too young to read and write can put together actions in a sequence to create interactive stories, games and animations.

Last June, with NSF support, Bers and her colleagues released ScratchJr as a free app for children ages 5 to 7. (A Kickstarter campaign in May raised $75,000 to adapt the app for Android and iPad.) As of February 2015, ScratchJr. had more than 500,000 downloads worldwide.

KIBO is a robot kit specifically designed for young children aged 4-7 years old. Children build their own robot with KIBO, program it to do what they want and decorate it. KIBO gives children the chance to make their ideas physical and tangible, and KIBO does all this without requiring screen time from PCs, tablets or smartphones. Credit: KinderLab Robotics

KIBO is a robot kit specifically designed for young children aged 4-7 years old. Children build their own robot with KIBO, program it to do what they want and decorate it. KIBO gives children the chance to make their ideas physical and tangible, and KIBO does all this without requiring screen time from PCs, tablets or smartphones.
Credit: KinderLab Robotics

Speaking at NSF last spring, Bers described her latest project, the KIWI robotic kit (subsequently renamed KIBO), which teaches programming through robotics, without screens, tablets or keyboards.

Using KIBO, students scan wooden blocks to give robots simple commands, in the process learning sequencing, one of the most important skills for early age groups. By combining a series of commands, kids make the robot move, dance, sing, sense the environment or light up.

With an NSF Small Business Innovation Research grant, Bers co-founded KinderLab Robotics and, using insights from her 15 years of research, transformed the KIWI prototype into a widely-available cyberlearning toy that could impact a large number of kids.

KIBO shipped its first several hundred units in 2014, but, according to Bers, building and selling KIBO was only a small part of the challenge.

“We don’t want to give away the technology and wash our hands of it,” Bers said. “We’re training the whole individual.”

For that reason, KIBO comes with a curriculum, lesson plans, badges, design journals and even teacher and parent training.

In March 2015, Bers and Amanda Sullivan, also of Tufts’ DevTech Group, published an article in the International Journal of Technology and Design Education describing learning outcomes from the eight-week robotics curriculum in pre-kindergarten through second grade. The results showed that beginning in pre-kindergarten, children were able to master basic robotics and programming skills, while older children were able to master increasingly complex concepts using the robotics kit in the same amount of time.

Both the KIBO robotic kit and the ScratchJr programming language have left the academic ivory tower and are now available to the wider public.

“When we teach children how to read and write, we don’t expect everyone to become a journalist or a novelist,” Bers said, speaking about KIBO in The New York Times. “But we believe they’ll be able to think in new ways because it opens the doors to thinking. We believe the same thing for the skills of programming and engineering.”

Children build their own robot with KIBO, program it to do what they want and decorate it – all without a PC, tablet or smartphone. Marina Bers of the DevTech Research Group at Tufts University developed the cyberlearning technology with support from the National Science Foundation. Credit: DevTech Research Group, Tufts University

 

The Kibo robot kit aims to teach young kids programming skills. Credit: DevTech Research Group, Tufts University


tags:


the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.
the National Science Foundation (NSF) is an independent federal US agency created to promote the progress of science.





Related posts :



Meet the AI-powered robotic dog ready to help with emergency response

  07 Jan 2026
Built by Texas A&M engineering students, this four-legged robot could be a powerful ally in search-and-rescue missions.

MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence