Robohub.org
 

The application of ‘elegance’ to machine behavior


by
30 January 2010



share this:

We all have some idea of what elegance means, whether our notion of it is tied up with silky evening dresses, polished wood and brass, chandeliers and stained glass windows, exotic carpets, and expensive sports cars, or with youthful bodies that are tanned and fit, knowing the local language well enough to use it sparingly with assurance, being appropriately dressed for the weather, good posture, fluid movement, a varied diet of moderate proportions, giving every task as much time as it requires, and so on.

 

Applying the notion of elegance to machine behavior may resonate for some and not for others. What could it possibly mean, elegant machine behavior, wouldn’t that be a contradiction in terms?

 

In this piece on another blog, I suggest that Apple should get into robotics, partly because to fail to do so would be to leave the largest looming growth market to others, and partly because I believe the company has something to contribute, something relating to elegance. I think Apple would set a high standard for machine behavior, and then exceed it, providing a tangible example of first-order elegance.

 

I say “first-order elegance” to suggest that there is also a “second-order” or “meta-elegance” that looks beyond present behavior to its ultimate effects. For example, formality may appear elegant, but if children are subjected to it all the time they may fail to develop emotional intelligence, an inelegant result.

 

As applied here, it is second-order or meta-elegance that is more important. It matters far less whether machines that tend land appear deft in their actions than whether the result of those actions appears more garden or desert-like. That’s not to say that first-order elegance is unimportant. Efficient movement, of the entire machine and of its parts, is an important aspect of cost-effectiveness, but efficiently producing a undesirable result gains nothing.

 

I believe that second-order elegance is achievable in this context, that machines can be programmed to understand complex living systems and nurture them, while raising food and fiber for market in their midst. If I didn’t believe that I would never have bothered trying to explain this vision of a greener future founded on robotics.

 

Reposted from Cultibotics.



tags: ,


John Payne





Related posts :



MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence