Robohub.org
 

The application of ‘elegance’ to machine behavior


by
30 January 2010



share this:

We all have some idea of what elegance means, whether our notion of it is tied up with silky evening dresses, polished wood and brass, chandeliers and stained glass windows, exotic carpets, and expensive sports cars, or with youthful bodies that are tanned and fit, knowing the local language well enough to use it sparingly with assurance, being appropriately dressed for the weather, good posture, fluid movement, a varied diet of moderate proportions, giving every task as much time as it requires, and so on.

 

Applying the notion of elegance to machine behavior may resonate for some and not for others. What could it possibly mean, elegant machine behavior, wouldn’t that be a contradiction in terms?

 

In this piece on another blog, I suggest that Apple should get into robotics, partly because to fail to do so would be to leave the largest looming growth market to others, and partly because I believe the company has something to contribute, something relating to elegance. I think Apple would set a high standard for machine behavior, and then exceed it, providing a tangible example of first-order elegance.

 

I say “first-order elegance” to suggest that there is also a “second-order” or “meta-elegance” that looks beyond present behavior to its ultimate effects. For example, formality may appear elegant, but if children are subjected to it all the time they may fail to develop emotional intelligence, an inelegant result.

 

As applied here, it is second-order or meta-elegance that is more important. It matters far less whether machines that tend land appear deft in their actions than whether the result of those actions appears more garden or desert-like. That’s not to say that first-order elegance is unimportant. Efficient movement, of the entire machine and of its parts, is an important aspect of cost-effectiveness, but efficiently producing a undesirable result gains nothing.

 

I believe that second-order elegance is achievable in this context, that machines can be programmed to understand complex living systems and nurture them, while raising food and fiber for market in their midst. If I didn’t believe that I would never have bothered trying to explain this vision of a greener future founded on robotics.

 

Reposted from Cultibotics.



tags: ,


John Payne





Related posts :



Radboud chemists are working with companies and robots on the transition from oil-based to bio-based materials

  10 Dec 2025
The search for new materials can be accelerated by using robots and AI models.

Robot Talk Episode 136 – Making driverless vehicles smarter, with Shimon Whiteson

  05 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Shimon Whiteson from Waymo about machine learning for autonomous vehicles.

Why companies don’t share AV crash data – and how they could

  01 Dec 2025
Researchers have created a roadmap outlining the barriers and opportunities to encourage AV companies to share the data to make AVs safer.

Robot Talk Episode 135 – Robot anatomy and design, with Chapa Sirithunge

  28 Nov 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chapa Sirithunge from University of Cambridge about what robots can teach us about human anatomy, and vice versa.

Learning robust controllers that work across many partially observable environments

  27 Nov 2025
Exploring designing controllers that perform reliably even when the environment may not be precisely known.

Human-robot interaction design retreat

  25 Nov 2025
Find out more about an event exploring design for human-robot interaction.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence