Robohub.org
 

The Robot Academy: An open online robotics education resource

by
26 May 2017



share this:

The Robot Academy is a new learning resource from Professor Peter Corke and the Queensland University of Technology (QUT), the team behind the award-winning Introduction to Robotics and Robotic Vision courses. There are over 200 lessons available, all for free.

Educators are encouraged to use the Academy content to support teaching and learning in class or set them as flipped learning tasks. You can easily create viewing lists with links to lessons or masterclasses. Under Resources, you can download a Robotics Toolbox and Machine Vision Toolbox, which are useful for simulating classical arm-type robotics, such as kinematics, dynamics, and trajectory generation.

The lessons were created in 2015 for the Introduction to Robotics and Robotic Vision courses. We describe our approach to creating the original courses in the article, An Innovative Educational Change: Massive Open Online Courses in Robotics and Robotic Vision. The courses were designed for university undergraduate students but many lessons are suitable for anybody, see the difficulty rating on each lesson.

Under Masterclasses, students can choose a subject and watch a set of videos related to that particular topic. Single lessons can offer a short training segment or a refresher. Three online courses, Introducing Robotics, are also offered.

Below are two examples of a lesson and masterclass. We encourage everyone to take a look at the QUT Robot Academy by visiting our website.


Single Lesson

Out and about with robots

In this video, we look at a diverse range of real-world robots and discuss what they do and how they do it.


Masterclass

Robot joint control: Introduction (Video 1 of 12)

In this video, students learn how we make robot joints move to the angles or positions that are required to achieve the desired end-effector motion. This is the job of the robot’s joint controller. In the lecture, we will take discuss the realms of control theory.


Robot joint control: Architecture (video 2 of 12)

In this lecture, we discuss a robot joint is a mechatronic system comprising motors, sensors, electronics and embedded computing that implements a feedback control system.


Robot joint control: Actuators (video 3 of 12)

Actuators are the components that actually move the robot’s joint. So, let’s look at a few different actuation technologies that are used in robots.

To watch the rest of the video series, visit their website.


If you enjoyed this article, you may also want to read:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , ,


Peter Corke is professor of robotic vision at Queensland University of Technology, and Director of the ARC Centre of Excellence for Robotic Vision.
Peter Corke is professor of robotic vision at Queensland University of Technology, and Director of the ARC Centre of Excellence for Robotic Vision.





Related posts :



Robot Talk Episode 55 – Sara Adela Abad Guaman

In the first episode of the new season, Claire chatted to Dr. Sara Adela Abad Guaman from University College London about adaptable robots inspired by nature.
30 September 2023, by

A short guide to Multidisciplinary Research

How and Why would I consider colliding two opposite disciplines in my research.
27 September 2023, by

Robo-Insight #5

In this fifth edition, we are excited to feature robot progress in human-robot interaction, agile movement, enhanced training methods, soft robotics, brain surgery, medical navigation, and ecological research. 
25 September 2023, by

Soft robotic tool provides new ‘eyes’ in endovascular surgery

The magnetic device can help visualise and navigate complex and narrow spaces.

‘Brainless’ robot can navigate complex obstacles

Researchers who created a soft robot that could navigate simple mazes without human or computer direction have now built on that work, creating a “brainless” soft robot that can navigate more complex and dynamic environments.
21 September 2023, by

Battery-free origami microfliers from UW researchers offer a new bio-inspired future of flying machines

Researchers at the University of Washington present battery-free microfliers that can change shape in mid-air to vary their dispersal distance.





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association