The Year of CoCoRo Video #30/52: Combined scenario number one

29 July 2015

share this:

CoCoRo30The EU-funded Collective Cognitive Robotics (CoCoRo) project has built a swarm of 41 autonomous underwater vehicles (AVs) that show collective cognition. Throughout 2015 – The Year of CoCoRo – we’ll be uploading a new weekly video detailing the latest stage in its development. This week there are two videos. The first shows a computer animation of  our “combined scenario #1.” The second shows how this scenario was performed by real robots in the water.

In CoCoRo, the search for a sunken metallic object on the waterbed was dealt with in several scenarios. The first video is a computer animation illustrating the phases of the most complex, “scenario #1:”

  1. The base station at the water surface moves into the habitat, with docked Jeff robots and a swarm of Lily robots confined to it.
  2. The Jeff robots are released. They sink to the ground and search the habitat.
  3. As soon as the first Jeff robot has found the target, it recruits other Jeff robots to the location via blue-light LED signals, leading to a positive feedback loop that attracts more and more Jeff robots to the area.
  4. Meanwhile, the Lily robots build a chain that connects the surface station to the aggregated Jeff robots on the ground.
  5. Through this “relay chain,” information (blink signals or other data) can be sent from the ground swarm to the surface station (and human operators) and vice versa.

Scenario #1 combines many of the individual algorithms and functionalities shown in previous videos in “The Year of CoCoRo.”

The second video shows how this scenario was performed by real robots in the water. It is noteworthy that all the phases in the scenario were executed in one single run and not split into different experiments. It was important for us to demonstrate that, using the modular algorithmic design of CoCoRo, it is possible to build up complex behavioral programs to solve composite tasks.

To date, in bio-inspired and swarm robotics, there have either been simple algorithms to enable robots to perform basic tasks or complex scenarios achieved by very complicated and specifically written software. To our knowledge, this is the first time in swarm robotics that several very simple signal exchange patterns and behavioral responses, triggered by simple signals within the environment, are combined with an elementary piece of code that allows the robot swarm to perform a very sophisticated behavioral program. There is no recourse to global knowledge, mapping, ego-positioning, image tracking or computer vision within this autonomous swarm. There are only: a few blue-light blinks, photoreceptors to receive these, random-walk programs, communication-free shoaling-behavior for the relay chain, radio-frequency pulsing and a simple internal-robot compass. This is how swarm robotics should be: simple, robust, flexible, scalable and – most importantly – it works!

tags: , , , , , , ,

Thomas Schmickl is an Associate Professor at Karl-Franzens University, Graz, Austria, and a lecturer at the University for Applied Sciences in St. Pölten, Austria.
Thomas Schmickl is an Associate Professor at Karl-Franzens University, Graz, Austria, and a lecturer at the University for Applied Sciences in St. Pölten, Austria.

Related posts :

At the forefront of building with biology

Raman is, as she puts it, “a mechanical engineer through and through.” Today, Ritu Raman leads the Raman Lab and is an Assistant Professor in the Department of Mechanical Engineering.
28 June 2022, by

Hot Robotics Symposium celebrates UK success

An internationally leading robotics initiative that enables academia and industry to find innovative solutions to real world challenges, celebrated its success with a Hot Robotics Symposium hosted across three UK regions last week.
25 June 2022, by

Researchers release open-source photorealistic simulator for autonomous driving

MIT scientists unveil the first open-source simulation engine capable of constructing realistic environments for deployable training and testing of autonomous vehicles.
22 June 2022, by

In this episode, Audrow Nash speaks to Maria Telleria, who is a co-founder and the CTO of Canvas. Canvas makes a drywall finishing robot and is based in the Bay Area. In this interview, Maria talks ab...
21 June 2022, by and

Coffee with a Researcher (#ICRA2022)

As part of her role as one of the IEEE ICRA 2022 Science Communication Awardees, Avie Ravendran sat down virtually with a few researchers from academia and industry attending the conference.

Seeing the robots at #ICRA2022 through the eyes of a robot

Accessbility@ICRA2022 and OhmniLabs provided three OhmniBots for the conference, allowing students, faculty and interested industry members to attend the expo and poster sessions.
17 June 2022, by

©2021 - ROBOTS Association


©2021 - ROBOTS Association