Robohub.org
 

The Year of CoCoRo Video #40/52: Adaptive layers water column


by
06 October 2015



share this:
Cocoro40

The EU-funded Collective Cognitive Robotics (CoCoRo) project has built a swarm of 41 autonomous underwater vehicles (AVs) that show collective cognition. Throughout 2015 – The Year of CooRo – we’ll be uploading a new weekly video detailing the latest stage in its development. This week’s video shows the mechanisms used in the “social inhibition algorithm” in more detail and our experiments with swarms of robots in a vertical aquarium. 

Last week we introduced the “social inhibition algorithm” we developed for our CoCoRo robot swarm. This is an algorithm for regulating division of labour, inspired by the self-organized regulation of physiological age in honeybee colonies.

The week the robots regulate an internal variable, X, by interacting with other robots, and split the swarm into three cohorts, allocating themselves to different depths in the aquarium. We added and removed robots. Their regulation of the internal variable leads to an automatic rearrangement of the swarm, so that there are always an equal number of robots at each depth.

We also added sources of interest: special robots or external lights, at different depth layers, and the swarm rearranges in a way that more robots are attracted to particularly interesting depths.

The algorithm shown here is promising due to its ability to automatically rearrange the robots to meet different demands, based only on local interactions. This makes it attractive for large scale applications where several sub-groups of the swarm need to act at different depth levels performing different tasks.



tags: , , , , ,


Thomas Schmickl is an Associate Professor at Karl-Franzens University, Graz, Austria, and a lecturer at the University for Applied Sciences in St. Pölten, Austria.
Thomas Schmickl is an Associate Professor at Karl-Franzens University, Graz, Austria, and a lecturer at the University for Applied Sciences in St. Pölten, Austria.





Related posts :



Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.

Robot Talk Episode 96 – Maria Elena Giannaccini

  01 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Maria Elena Giannaccini from the University of Aberdeen about soft and bioinspired robotics for healthcare and beyond.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association