Robohub.org
 

Using 3D snapshots to control a small helicopter


by
30 September 2012



share this:

In the latest article in the Autonomous Robots journal, researchers from the Australian Defense Force Academy present a new control strategy for small flying robots that uses only vision and inertial sensors.

To control a flying robot, you usually need to know the attitude of the robot (roll, pitch, yaw), where it is in the horizontal plane (x,y), and how high it is from the ground (z). While attitude measurements are provided by inertial sensors on board the robot, most flying robots rely on GPS and additional range sensors such as ultra-sound sensors, lasers or radars to determine their position and altitude. GPS signal however is not always available in cluttered environments and can be jammed. Additional sensors increase the weight that needs to be carried by the robot. Instead Garratt et al. propose to replace position sensors with a single small, low cost camera.

By comparing a snapshot taken from a downward pointing camera and a reference snapshot taken at an earlier time, the robot is able to calculate its displacement in the horizontal plane. The loom of the image is used to calculate the change in altitude. Image loom corresponds to image expansion or contraction as can be seen in the images below. By reacting to these image displacements, the robot is able to control its position.

Grass as seen from altitudes of 0.25 m, 0.5 m, 1.0 m and 2.0 m (from left to right).

Using this strategy, the researchers were able to show in simulation that a helicopter could perform take-off, hover and the transition from low speed forward flight to hover. The ability to track horizontal and vertical displacements using 3D snapshots from a single camera was then confirmed in reality using a Vario XLC gas-turbine helicopter.

In the future, the authors intend to further test the 3D snapshot control strategy in flight using their Vario XLC helicopter before moving to smaller platforms such as an Asctec Pelican quadrotor. Additional challenges include taking into account the shadow of the robot, which might change position from snapshot to snapshot.

Source: Matthew A. Garratt, Andrew J. Lambert and Hamid Teimoori (2012) Design of a 3D snapshot based visual flight control system using a single camera in hover, Autonomous Robots.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 125 – Chatting with robots, with Gabriel Skantze

  13 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriel Skantze from KTH Royal Institute of Technology about having natural face-to-face conversations with robots.

Preparing for kick-off at RoboCup2025: an interview with General Chair Marco Simões

and   12 Jun 2025
We caught up with Marco to find out what exciting events are in store at this year's RoboCup.

Interview with Amar Halilovic: Explainable AI for robotics

  10 Jun 2025
Find out about Amar's research investigating the generation of explanations for robot actions.

Robot Talk Episode 124 – Robots in the performing arts, with Amy LaViers

  06 Jun 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Amy LaViers from the Robotics, Automation, and Dance Lab about the creative relationship between humans and machines.

Robot Talk Episode 123 – Standardising robot programming, with Nick Thompson

  30 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Nick Thompson from BOW about software that makes robots easier to program.

Congratulations to the #AAMAS2025 best paper, best demo, and distinguished dissertation award winners

  29 May 2025
Find out who won the awards presented at the International Conference on Autonomous Agents and Multiagent Systems last week.

Congratulations to the #ICRA2025 best paper award winners

  27 May 2025
The winners and finalists in the different categories have been announced.

#ICRA2025 social media round-up

  23 May 2025
Find out what the participants got up to at the International Conference on Robotics & Automation.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence