Robohub.org
 

Using 3D snapshots to control a small helicopter

by
30 September 2012



share this:

In the latest article in the Autonomous Robots journal, researchers from the Australian Defense Force Academy present a new control strategy for small flying robots that uses only vision and inertial sensors.

To control a flying robot, you usually need to know the attitude of the robot (roll, pitch, yaw), where it is in the horizontal plane (x,y), and how high it is from the ground (z). While attitude measurements are provided by inertial sensors on board the robot, most flying robots rely on GPS and additional range sensors such as ultra-sound sensors, lasers or radars to determine their position and altitude. GPS signal however is not always available in cluttered environments and can be jammed. Additional sensors increase the weight that needs to be carried by the robot. Instead Garratt et al. propose to replace position sensors with a single small, low cost camera.

By comparing a snapshot taken from a downward pointing camera and a reference snapshot taken at an earlier time, the robot is able to calculate its displacement in the horizontal plane. The loom of the image is used to calculate the change in altitude. Image loom corresponds to image expansion or contraction as can be seen in the images below. By reacting to these image displacements, the robot is able to control its position.

Grass as seen from altitudes of 0.25 m, 0.5 m, 1.0 m and 2.0 m (from left to right).

Using this strategy, the researchers were able to show in simulation that a helicopter could perform take-off, hover and the transition from low speed forward flight to hover. The ability to track horizontal and vertical displacements using 3D snapshots from a single camera was then confirmed in reality using a Vario XLC gas-turbine helicopter.

In the future, the authors intend to further test the 3D snapshot control strategy in flight using their Vario XLC helicopter before moving to smaller platforms such as an Asctec Pelican quadrotor. Additional challenges include taking into account the shadow of the robot, which might change position from snapshot to snapshot.

Source: Matthew A. Garratt, Andrew J. Lambert and Hamid Teimoori (2012) Design of a 3D snapshot based visual flight control system using a single camera in hover, Autonomous Robots.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk Episode 89 – Simone Schuerle

In the latest episode of the Robot Talk podcast, Claire chatted to Simone Schuerle from ETH Zürich all about microrobots, medicine and science.
14 June 2024, by

Robot Talk Episode 88 – Lord Ara Darzi

In the latest episode of the Robot Talk podcast, Claire chatted to Lord Ara Darzi from Imperial College London all about robotic surgery - past, present and future.
07 June 2024, by

Robot Talk Episode 87 – Isabelle Ormerod

In the latest episode of the Robot Talk podcast, Claire chatted to Isabelle Ormerod from the University of Bristol all about human-centred design and women in robotics.
31 May 2024, by

Robot Talk Episode 86 – Mario Di Castro

In the latest episode of the Robot Talk podcast, Claire chatted to Mario Di Castro from CERN all about robotic inspection and maintenance in hazardous environments.
24 May 2024, by

Congratulations to the #ICRA2024 best paper winners

The winners and finalists in the different categories have been announced.
20 May 2024, by

Robot Talk Episode 85 – Margarita Chli

In the latest episode of the Robot Talk podcast, Claire chatted to Margarita Chli from the University of Cyprus all about vision, navigation, and small aerial drones.
17 May 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association