Robohub.org
 

Using geometry to help robots map their environment

by
26 February 2014



share this:

This post is part of our ongoing efforts to make the latest papers in robotics accessible to a general audience.

To get around unknown environments, most robots will need to build maps. To help them do so, robots can use the fact that human environments are often made of geometric shapes like circles, rectangles and lines. The latest paper in Autonomous Robots presents a flexible framework for geometrical robotic mapping in structured environments.

Most human designed environments, such as buildings, present regular geometrical properties that can be preserved in the maps that robots build and use. If some information about the general layout of the environment is available, it can be used to build more meaningful models and significantly improve the accuracy of the resulting maps. Human cognition exploits domain knowledge to a large extent, usually employing prior assumptions for the interpretation of situations and environments. When we see a wall, for example, we assume that it’s straight. We’ll probably also assume that it’s connected to another orthogonal wall.

This research presents a novel framework for the inference and incorporation of knowledge about the structure of the environment into the robotic mapping process. A hierarchical representation of geometrical elements (features) and relations between them (constraints) provides enhanced flexibility, also making it possible to correct wrong hypotheses. Various features and constraints are available, and it is very easy to add even more.

A variety of experiments with both synthetic and real data were conducted. The map below was generated from data measured by a robot navigating Killian Court at MIT using a laser scanner, and allows the geometrical properties of the environment to be well respected. You can easily tell that features are parallel, orthogonal and straight where needed.

map2

For more information, you can read the paper Feature based graph-SLAM in structured environments ( P. de la Puente and D. Rodriguez-Losada , Autonomous Robots – Springer US, Feb 2014) or ask questions below! 



tags: , ,


Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).
Autonomous Robots Blog Latest publications in the journal Autonomous Robots (Springer).





Related posts :



Robot Talk Episode 90 – Robotically Augmented People

In this special live recording at the Victoria and Albert Museum, Claire chatted to Milia Helena Hasbani, Benjamin Metcalfe, and Dani Clode about robotic prosthetics and human augmentation.
21 June 2024, by

Robot Talk Episode 89 – Simone Schuerle

In the latest episode of the Robot Talk podcast, Claire chatted to Simone Schuerle from ETH Zürich all about microrobots, medicine and science.
14 June 2024, by

Robot Talk Episode 88 – Lord Ara Darzi

In the latest episode of the Robot Talk podcast, Claire chatted to Lord Ara Darzi from Imperial College London all about robotic surgery - past, present and future.
07 June 2024, by

Robot Talk Episode 87 – Isabelle Ormerod

In the latest episode of the Robot Talk podcast, Claire chatted to Isabelle Ormerod from the University of Bristol all about human-centred design and women in robotics.
31 May 2024, by

Robot Talk Episode 86 – Mario Di Castro

In the latest episode of the Robot Talk podcast, Claire chatted to Mario Di Castro from CERN all about robotic inspection and maintenance in hazardous environments.
24 May 2024, by

Congratulations to the #ICRA2024 best paper winners

The winners and finalists in the different categories have been announced.
20 May 2024, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association