Robohub.org
 

Vision-based navigation with motion blur


by
20 July 2010



share this:

Robots often need to know where they are in the world to navigate efficiently. One of the cheapest ways to localize is to strap a camera on-board and extract visual features from the environment. However, challenges arise when robots move fast enough to create motion blur. The problem is that blurry images lead to decreased accuracy in localization. Because of this, robots that move too fast might no longer be able to localize and as a result might get lost or need to stop and re-localize.

Instead, Hornung et al. propose to use reinforcement learning to determine the optimal policy which allows the robots to go at speeds appropriate for navigation while ensuring that they get to destination as fast as possible. The actual implementation uses an augmented Markov decision process (MDP) to model the navigation task.

The learned policy is then compressed using a clustering technique to avoid being memory-sassy, which would be a major limitation for robots with low storage capacity.

Experiments were successfully conducted on two different robots in indoor and outdoor scenarios (see video) and the robots were faster than if they had navigated at constant speed. In the future, Hornung et al. hope to implement their system on fast moving robots, such as unmanned aerial vehicles!



tags:


Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence