Robohub.org
 

Why robots will not be smarter than humans by 2029

by
07 March 2014



share this:
Turing_Source_Neil_Crosby
Statue of Alan Turing. Photo credit: Neil Crosby

In the last few days we’ve seen a spate of headlines like 2029: the year when robots will have the power to outsmart their makers, all occasioned by an Observer interview with Google’s newest director of engineering Ray Kurzweil.

Much as I respect Kurzweil’s achievements as an inventor, I think he is profoundly wrong. Of course I can understand why he would like it to be so – he would like to live long enough to see this particular prediction come to pass. But optimism doesn’t make for sound predictions. Here are several reasons that robots will not be smarter than humans by 2029:

  • What exactly does as-smart-as-humans mean? Intelligence is very hard to pin down. One thing we do know about intelligence is that it is not one thing that humans or animals have more or less of. Humans have several different kinds of intelligence – all of which combine to make us human. Analytical or logical intelligence of course – the sort that makes you good at IQ tests. But emotional intelligence is just as important, especially (and oddly) for decision making. So is social intelligence – the ability to intuit others’ beliefs, and to empathise.
  • Human intelligence is embodied. As Rolf Pfeifer and Josh Bongard explain in their outstanding book you can’t have one without the other. The old Cartesian dualism – the dogma that robot bodies (the hardware) and mind (the software) are distinct and separable – is wrong and deeply unhelpful. We now understand that the hardware and software have to be co-designed. But we really don’t understand how to do this – none of our engineering paradigms fit. A whole new approach needs to be invented.
  • As-smart-as-humans probably doesn’t mean as-smart-as newborn babies, or even two year old infants. They probably mean somehow-comparable-in-intelligence-to adult humans. But an awful lot happens between birth and adulthood. And the Kurzweilians probably also mean as-smart-as-well-educated-humans. But of course this requires both development – a lot of which somehow happens automatically – and a great deal of nurture. Again we are only just beginning to understand the problem, and developmental robotics – if you’ll forgive the pun – is still in its infancy.
  • Moore’s Law will not help. Building human-equivalent robot intelligence needs far more than just lots of computing power. It will certainly need computing power, but that’s not all. It’s like saying that all you need to build a cathedral is loads of marble. You certainly do need large quantities of marble – the raw material – but without (at least) two other things: the design for a cathedral, and/or the knowhow of how to realise that design – there will be no cathedral. The same is true for human-equivalent robot intelligence.
  • The hard problem of learning and the even harder problem of consciousness. (I’ll concede that a robot as smart as a human doesn’t have to be conscious – aphilosophers-zombie-bot would do just fine.) But the human ability to learn, then generalise that learning and apply it to completely different problems is fundamental, and remains an elusive goal for robotics and AI. In general this is called Artificial General Intelligence, which remains as controversial as it is unsolved.

These are the reasons I can be confident in asserting that robots will not be smarter than humans within 15 years. It’s not just that building robots as smart as humans is a very hard problem. We have only recently started to understand how hard it is well enough to know that whole new theories (of intelligence, emergence, embodied cognition and development, for instance) will be needed, as well as new engineering paradigms. Even if we had solved these problems and a present day Noonian Soong had already built a robot with the potential for human equivalent intelligence – it still might not have enough time to develop adult-equivalent intelligence by 2029.

That thought leads me to another reason that it’s unlikely to happen so soon. There is – to the best of my knowledge – no very-large-scale multidisciplinary research project addressing, in a coordinated way, all of the difficult problems I have outlined here. The irony is that there might have been. The project was called Robot Companions, it made it to the EU FET 10-year Flagship project shortlist but was not funded.

 


Search Results



tags: , , , , , ,


Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.
Alan Winfield is Professor in robotics at UWE Bristol. He communicates about science on his personal blog.





Related posts :



Tesla’s Optimus robot isn’t very impressive – but it may be a sign of better things to come

Musk has now unveiled a prototype of the robot, called Optimus, which he hopes to mass-produce and sell for less than US$20,000 (A$31,000).
04 October 2022, by

Bipedal robot achieves Guinness World Record in 100 metres

Cassie the robot, developed at Oregon State University, records the fastest 100 metres by a bipedal robot.
03 October 2022, by and

Breaking through the mucus barrier

A capsule that tunnels through mucus in the GI tract could be used to orally administer large protein drugs such as insulin.
02 October 2022, by

Women in Tech leadership resources from IMTS 2022

There’ve been quite a few events recently focusing on Women in Robotics, Women in Manufacturing, Women in 3D Printing, in Engineering, and in Tech Leadership. One of the largest tradeshows in the US is IMTS 2022. Here I bring you some resources shared in the curated technical content and leadership sessions.
29 September 2022, by and

MIT engineers build a battery-free, wireless underwater camera

The device could help scientists explore unknown regions of the ocean, track pollution, or monitor the effects of climate change.
27 September 2022, by

How do we control robots on the moon?

In the future, we imagine that teams of robots will explore and develop the surface of nearby planets, moons and asteroids - taking samples, building structures, deploying instruments.
25 September 2022, by , and





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association