Robohub.org
 

Why use robots, round 4

by
17 September 2007



share this:

Machines can work continuously, 24/7. Doing so would require power enough to last through the night and either artificial lighting or night vision, and some operations are probably best left for daylight, but they needn’t stop working when the sun goes down. This means that a single machine can manage a greater area than if it were only operating during the day. It’s also useful in limiting damage by deer, which usually come around at night.

 

Machines can make use of senses we don’t possess or which are more sensitive than those we do. Their vision can extend into the infrared and ultraviolet, as well as more finely dividing the visible spectrum, and can also be more detailed and quicker (tracking faster motion) or more accurately track changes over a period of days or weeks. Their hearing can be far sharper than our own. They can be equipped with chemical sensitivity capable of distinguishing between substances we would group together under broad categories, like sweet or acrid. They can also be equipped with radar and sonar, laser ranging and scanning, accurate measures of temperature, humidity, and insolation, and their manipulators can be made to gauge and control pressure more accurately than do our own fingertips. In short, machines can have far better data available to them than would an unassisted human gardener in the same position.

 

Machines can also correlate information very quickly, drawing on recorded data and expert systems to make decisions, and applying heuristics to experience to refine those expert systems. A machine might reasonably be expected to identify to species every plant within the area it was tending, to know whether they were considered crops, benign, weeds, or threatened or endangered, and treat them accordingly. It might be expected to predict to an accuracy of a few days when it could harvest a particular crop, and estimate to within a few percentage points the quantity that could be expected, barring a calamity such as hail or a tornado. It might also be expected to adapt a cropping plan to market conditions, for example putting in more of some crop that hadn’t done well elsewhere and would therefore be in demand.

 

Machines can whisper to each other, via radio links, over distances far greater than a human shout will carry. They can coordinate their activities precisely, cooperating toward a common goal without so much as a hiccup.

 

Machines can, as has recently been demonstrated by DARPA’s autonomous vehicle competitions, operate in an uncontrolled environment.

 

The foregoing is intended as a glimpse of how it might work once development was far along. It presumes a mature technology, some of the pieces of which aren’t yet available or only just beginning to be so.

 

Reposted from Cultibotics.



tags: , , , , ,


John Payne





Related posts :



Countering Luddite politicians with life (and cost) saving machines

Beyond aerial tricks, drones are now being deployed in novel ways to fill the labor gap of menial jobs that have not returned since the pandemic.
04 December 2022, by

Call for robot holiday videos 2022

That’s right! You better not run, you better not hide, you better watch out for brand new robot holiday videos on Robohub!
02 December 2022, by

The Utah Bionic Leg: A motorized prosthetic for lower-limb amputees

Lenzi’s Utah Bionic Leg uses motors, processors, and advanced artificial intelligence that all work together to give amputees more power to walk, stand-up, sit-down, and ascend and descend stairs and ramps.

Touch sensing: An important tool for mobile robot navigation

Proximal sensing often is a blind spot for most long range sensors such as cameras and lidars for which touch sensors could serve as a complementary modality.
29 November 2022, by

Study: Automation drives income inequality

New data suggest most of the growth in the wage gap since 1980 comes from automation displacing less-educated workers.
27 November 2022, by

Flocks of assembler robots show potential for making larger structures

Researchers make progress toward groups of robots that could build almost anything, including buildings, vehicles, and even bigger robots.
25 November 2022, by





©2021 - ROBOTS Association


 












©2021 - ROBOTS Association