Robohub.org
 

Yeti robot avoids snow traps


by
24 July 2011



share this:

Have you ever skied down an immaculate white slope? Hard to see the bumps, right?

The same is true for the Yeti robot that needs to drive through polar regions that feature obstacles, slopes and different densities of snow. In such low-contrast terrain, vision won’t be able to detect challenging situations that might get the robot stuck. Instead, robots should rely on proprioceptive sensors, such as gyroscopes, accelerometers, motor current and wheel encoders to indirectly ‘feel’ the terrain below.

Using this idea, Trautmann et al. developed an algorithm that makes the robot learn to detect what it ‘feels’ like right before getting stuck (using a Support Vector Machine). The dangerous situations are then classified (using a Hidden Markov Model) and an escape behavior is implemented.

Polar terrain features that present a mobility challenge to the 73kg Yeti robot were determined during field deployments in Greenland and Antarctica. These challenging scenarios were reproduced in Hanover and used to train the robot. Results show that the robot is able to detect tricky situations with an error rate as low as 1.6% for a variety of obstacle geometries, approach angles to obstacles, robot speeds, and snow conditions. Furthermore, the robot is able to recognize the challenge type correctly in 100% of situations.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot see, robot do: System learns after watching how-tos

  14 May 2025
Researchers have developed a new robotic framework that allows robots to learn tasks by watching a how-to video

AI-powered robots help tackle Europe’s growing e-waste problem

  12 May 2025
EU-funded researchers have developed adaptable robots that could transform the way we recycle electronic waste, benefiting both the environment and the economy.

Robot Talk Episode 120 – Evolving robots to explore other planets, with Emma Hart

  09 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Emma Hart from Edinburgh Napier University about algorithms that 'evolve' better robot designs and control systems.

Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence