Robohub.org
 

Flying Ring robot can fly on its side


by
09 August 2016



share this:
The Flying Ring in action. Source: Rajan Gill/YouTube

The Flying Ring in action. Source: Rajan Gill/YouTube

The Flying Ring is a new flying vehicle being developed at the Institute for Dynamic Systems and Control, ETH Zurich. The goal of the project is to fully characterize all aerodynamic properties of the vehicle. While traditional quadcopters are agile and carry high payloads they are not efficient in forward flight, with traditional lift to drag ratios comparable to a fruit fly. The Flying Ring vehicle, however, can fly on its side, allowing the blades to propel it forward faster than a typical quadcopter.

The video depicts the first prototype flying tethered. The annular wing (or ring) has a flat airfoil shape, which also covers the propellers and enhances human safety. These autonomous controlled flights help extract aerodynamic properties of the vehicle. A lift to drag ratio (which is a metric for aerodynamic efficiency) of 12 is achieved for the ring only. The total vehicle lift to drag ratio is lower, but can be substantially improved upon with an optimized design. Further details will be submitted to a future conference or research journal.

Why is the Flying Ring tethered? Flying tethered is an important part of the test, as it is used to characterize the steady state operating conditions at various flight speeds in a tight space, namely:

  • Thrust of the propeller in forward flight
  • Analysing annular wing lift and drag
  • Evaluating body drag

In terms of structure, the vehicle is a standard quadrotor configuration. It has depron foam sheet attached via zip ties to the four motor mount arms, with black carbon slab wrapped around the foam.

Solidworks render of the vehicle, Flying Ring. Photo credit: Rajan Gill

Solidworks render of the vehicle, Flying Ring. Photo credit: Rajan Gill

Links to other videos shown:
Quadrotor pole acrobatics
Cooperative quadrotor ball throwing and catching
Onboard quadrocopter failsafe: flight after actuator failure
Flying Robots, Builders of tomorrow

Researchers
Rajan Gill and Raffaello D’Andrea
Institute for Dynamic Systems and Control (IDSC), ETH Zurich, Switzerland
ETH Zurich, Flying Machine Arena

Acknowledgments
This work is supported by and builds upon prior contributions by numerous collaborators in the Flying Machine Arena project.

This research was funded in part by the National Research Council of Canada (NSERC) and the Swiss National Science Foundation (SNSF).


If you enjoyed this article, you may also want to read:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , ,


Rajan Gill is currently a Ph.D. candidate at the Swiss Federal Institute of Technology in Zurich (ETH Zurich) in the area of design and control of flying vehicles.
Rajan Gill is currently a Ph.D. candidate at the Swiss Federal Institute of Technology in Zurich (ETH Zurich) in the area of design and control of flying vehicles.





Related posts :



Robot Talk Episode 119 – Robotics for small manufacturers, with Will Kinghorn

  02 May 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Will Kinghorn from Made Smarter about how to increase adoption of new tech by small manufacturers.

Multi-agent path finding in continuous environments

  01 May 2025
How can a group of agents minimise their journey length whilst avoiding collisions?

Interview with Yuki Mitsufuji: Improving AI image generation

  29 Apr 2025
Find out about two pieces of research tackling different aspects of image generation.

Robot Talk Episode 118 – Soft robotics and electronic skin, with Miranda Lowther

  25 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Miranda Lowther from the University of Bristol about soft, sensitive electronic skin for prosthetic limbs.

Interview with Amina Mević: Machine learning applied to semiconductor manufacturing

  17 Apr 2025
Find out how Amina is using machine learning to develop an explainable multi-output virtual metrology system.

Robot Talk Episode 117 – Robots in orbit, with Jeremy Hadall

  11 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Jeremy Hadall from the Satellite Applications Catapult about robotic systems for in-orbit servicing, assembly, and manufacturing.

Robot Talk Episode 116 – Evolved behaviour for robot teams, with Tanja Kaiser

  04 Apr 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Tanja Katharina Kaiser from the University of Technology Nuremberg about how applying evolutionary principles can help robot teams make better decisions.

AI can be a powerful tool for scientists. But it can also fuel research misconduct

  31 Mar 2025
While AI is allowing scientists to make technological breakthroughs, there’s also a darker side to the use of AI in science: scientific misconduct is on the rise.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2025.05 - Association for the Understanding of Artificial Intelligence


 












©2025.05 - Association for the Understanding of Artificial Intelligence