Robohub.org
 

Quadrocopter failsafe algorithm: Recovery after propeller loss

by
04 March 2014



share this:
Drone-Failsafe-Algorithm

UPDATE 04/03/2014:

In this video update, we show that a quadrocopter can be safely piloted by hand after a motor fails, without the aid of a motion capture system. This follows our previous video, where we demonstrated how a complete propeller failure can be automatically detected, and that a quadrocopter can still maintain stable flight despite the complete loss of a propeller. 

In the earlier video, we relied on an external motion capture system to measure the quadrocopter’s position and orientation.  By moving more of the algorithm onto the vehicle, the quadrocopter can now be piloted by hand after the failure. The algorithm is executed on the quadrocopter’s onboard micro-controller, and the only sensors required are the quadrocopter’s angular rate gyroscopes. We use blinking LEDs, mounted on the quadrocopter’s arms, to indicate a virtual yaw angle, so that the pilot can control the vehicle with the same remote control commands after the failure. As an alternative to the LED system, an onboard magnetometer could be used to track the vehicle’s yaw angle. Alternatively, by using more sophisticated algorithms, the system could be made to work using only the rate gyroscopes.

ORIGINAL STORY 02/12/2013

The video in this article shows an automatic failsafe algorithm that allows a quadrocopter to gracefully cope with the loss of a propeller. The propeller was mounted without a nut, and thus eventually vibrates itself loose. The failure is detected automatically by the system, after which the vehicle recovers and returns to its original position. The vehicle finally executes a controlled, soft landing, on a user’s command.

The failsafe controller uses only hardware that is readily available on a standard quadrocopter, and could thus be implemented as an algorithmic-only upgrade to existing systems. Until now, the only way a multicopter could survive the loss of a propeller (or motor), is by having redundancy (e.g. hexacopters, octocopters). However, this redundancy comes at the cost of additional structural weight, reducing the vehicle’s useful payload. Using this technology, (more efficient) quadrocopters can be used in safety critical applications, because they still have the ability to gracefully recover from a motor/propeller failure.

Failsafe_algorithm_sequence
(A) shows the quadrocopter in normal operation. In (B) the propeller detaches due to vibrations, and the quadrocopter starts pitching over in (C) – (E). In (F) the vehicle has regained control, and is flying stably.

The key functionality of the failsafe controller is a novel algorithm that I developed as part of my doctoral research at the Institute for Dynamic Systems and Control at ETH Zurich. This new approach allows such a vehicle to remain in flight despite the loss of one, two, or even three propellers. Having lost one (or more) propellers, the vehicle enters a continuous rotation — we then control the direction of this axis of rotation, and the total thrust that the vehicle produces, allowing us to control the vehicle’s acceleration and thus position.

Even if the vehicle can no longer produce sufficient thrust to support its own weight, this technology would still be useful: one could, for example, try to minimize the multicopter’s velocity when it hits the ground, or steer the multicopter away from dangerous situations such as water, or people on the ground.

This control approach can also be applied to design novel flying vehicles — we will be releasing some related results soon.

This technology is patent pending.

For more information, have a look at the Flying Machine Arena website, the IDSC research page, or just post your question in the comments below.

 

If you liked this article, you may also be interested in:

See all the latest robotics news on Robohub, or sign up for our weekly newsletter.



tags: , , , , , , , , , , , , , , , ,


Mark Mueller is a researcher at ETH Zurich's Flying Machine Arena.
Mark Mueller is a researcher at ETH Zurich's Flying Machine Arena.





Related posts :



Open Robotics Launches the Open Source Robotics Alliance

The Open Source Robotics Foundation (OSRF) is pleased to announce the creation of the Open Source Robotics Alliance (OSRA), a new initiative to strengthen the governance of our open-source robotics so...

Robot Talk Episode 77 – Patricia Shaw

In the latest episode of the Robot Talk podcast, Claire chatted to Patricia Shaw from Aberystwyth University all about home assistance robots, and robot learning and development.
18 March 2024, by

Robot Talk Episode 64 – Rav Chunilal

In the latest episode of the Robot Talk podcast, Claire chatted to Rav Chunilal from Sellafield all about robotics and AI for nuclear decommissioning.
31 December 2023, by

AI holidays 2023

Thanks to those that sent and suggested AI and robotics-themed holiday videos, images, and stories. Here’s a sample to get you into the spirit this season....
31 December 2023, by and

Faced with dwindling bee colonies, scientists are arming queens with robots and smart hives

By Farshad Arvin, Martin Stefanec, and Tomas Krajnik Be it the news or the dwindling number of creatures hitting your windscreens, it will not have evaded you that the insect world in bad shape. ...
31 December 2023, by

Robot Talk Episode 63 – Ayse Kucukyilmaz

In the latest episode of the Robot Talk podcast, Claire chatted to Ayse Kucukyilmaz from the University of Nottingham about collaboration, conflict and failure in human-robot interactions.
31 December 2023, by





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association