Robohub.org
 

#ICRA16 duckies and robots video: Daily life activities


by
10 May 2016



share this:

ICRAduckies

The robotics community have created a series of video tributes that showcase some of the contributions to ICRA, the largest conference in the field of robotics and automation. Episode two features robots that iron garments, use spoons and spatulas to scoop up objects, and, of course, move rubber duckies!

Stay tuned for episode three: Incredible machines


Papers featured in this video:

“Multi-Sensor Surface Analysis for Robotic Ironing”
Yinxiao Li, Xiuhan Hu, Danfei Xu, Yonghao Yue, Eitan Grinspun, Peter K. Allen
(Columbia University)

This robot can effectively iron garments, using a camera to recognize where the wrinkles are. This technique has been successfully tested on pants, shirts, sweaters and fabric.


“Deep Spatial Autoencoders for Visuomotor Learning”
Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
(UC Berkeley)

This robot used deep learning to obtain a concise representation of the visual scene from raw image pixels. Using these features, the robot learned hand-eye coordination skills such as using spoons and spatulas to scoop objects and moving duckies to their aquatic habitat.


“An ISO10218-compliant adaptive damping controller for safe Physical Human-Robot Interaction”
Benjamin Navarro, Andrea Cherubini, Aicha Fonte, Robin Passama, Gerard Poisson, and Philippe Fraisse
(PRISME Laboratory, University of Orléans)

This robot can safely perform a collaborative screwing task. The operator uses a touch interface to trigger the different phases of the work.


“Robotic Disease Detection in Greenhouses”
Noa Schor, Avital Bechar, Timea Ignat, Aviv Dombrovsky, Yigal Elad, Sigal Berman
(ABC robotics, Ben-Gurion University of the Negev)

This prototype of disease detection system for greenhouse peppers can lead to improved quality, increased yield, and reduction of pesticide use. The robot is guided by the perception of multiple threats (and occasional ducky visitors).


“Interactive Computational Imaging for Deformable Object Analysis”
Donald G. Dansereau, Surya P. N. Singh, Jurgen Leitner
(Australian Centre for Robotic Vision, Queensland University of Technology)

This robot analyzes the material properties of an object by watching, while gently squeezing. Image filtering and motion amplification allow the method to work with stiff or delicate objects, and those exhibiting little texture.

For more details about these clips, visit the ICRA trailer website.



tags: , , ,


Robohub Editors





Related posts :



MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence