Robohub.org
 

Learning behavioral models


by
21 December 2010



share this:

It is often difficult to predict the high-level behavior of a robot given low-level models about sensors, actuators and controllers. You might know your robot will turn in response to obstacles but not how it will behave in a room full of people.

Modeling the global behavior of a robot is useful in order to predict how the robot behaves in different environments. Furthermore, once a good model is inferred, it can be used to improve the robot’s controller parameters online.

To model robot behaviors, Infantes et al. use a probabilistic representation called Dynamic Bayesian Networks. The approach is tested using the Rackham RWI B21R museum guide robot shown below that needs to navigate in an open environment with people. The network captures information concerning the robot’s parameters, environment variables, robot state variables and mission variables. The model is then used to optimize the robot behavior for a given environment. During the learning process, robots are rewarded for good behaviors that avoid failures, go fast and are “human-friendly”. Using this approach, the robot fails less, is faster and has better human acceptance than a robot with hand-tuned parameters.

In the future, Infantes et al. plan to use this approach to learn other robotic tasks such as grasping or interacting with humans.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



#ICML2025 outstanding position paper: Interview with Jaeho Kim on addressing the problems with conference reviewing

  15 Sep 2025
Jaeho argues that the AI conference peer review crisis demands author feedback and reviewer rewards.

Apertus: a fully open, transparent, multilingual language model

  11 Sep 2025
EPFL, ETH Zurich and the Swiss National Supercomputing Centre (CSCS) released Apertus today, Switzerland’s first large-scale, open, multilingual language model.

Robots to the rescue: miniature robots offer new hope for search and rescue operations

  09 Sep 2025
Small two-wheeled robots, equipped with high-tech sensors, will help to find survivors faster in the aftermath of disasters.

#IJCAI2025 distinguished paper: Combining MORL with restraining bolts to learn normative behaviour

and   04 Sep 2025
The authors introduce a framework for guiding reinforcement learning agents to comply with social, legal, and ethical norms.

Researchers are teaching robots to walk on Mars from the sand of New Mexico

  02 Sep 2025
Researchers are closer to equipping a dog-like robot to conduct science on the surface of Mars

Engineering fantasy into reality

  26 Aug 2025
PhD student Erik Ballesteros is building “Doc Ock” arms for future astronauts.

RoboCup@Work League: Interview with Christoph Steup

and   22 Aug 2025
Find out more about the RoboCup League focussed on industrial production systems.

Interview with Haimin Hu: Game-theoretic integration of safety, interaction and learning for human-centered autonomy

and   21 Aug 2025
Hear from Haimin in the latest in our series featuring the 2025 AAAI / ACM SIGAI Doctoral Consortium participants.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence