Robohub.org
 

Replicable and measureable robotics research: Back to the basics of the scientific method


by
30 September 2016



share this:
robot-and-scientist

In general, as any robotics and/or AI PhD student knows very well, replicating the research results of other labs is quite difficult. The information you can customary find in a reputed journal paper is usually not enough to reproduce the experimental results claimed by the authors, let alone to make comparisons of the strengths and weaknesses of the different methods proposed in the literature in term of performances.

This is a serious issue, as the possibility to reproduce results is the cornerstone of the scientific method. Science is defined by the possibility to experimentally verify, Karl Popper would say ‘falsify’, ‘theories’. This is even more striking when at least part of robotics research is more and more regarded as ‘science,’ as for example, it is witnessed by the recent launch by AAAS with the new journal Science Robotics. By the way, what’s a ‘theory’ in robotics and AI?

This uncomfortable situation not only makes the cumulative process of research difficult, it also severely impairs technology transfer and industrial exploitation. It is worth noting that while everybody includes a state-of-the-art section in grant applications or business plans, the sad truth is that state-of-the-art is (more or less) insightfully guessed as published results cannot in many, if not most, cases be checked objectively.

And what about the TRLs (Technology Readiness Levels) at the core of SPARC Strategic Research Agenda? The community has been aware of this problem for a long time. In 2008, the European Robotics Network (EURON) started a Special Interest Group on Good Experimental Methodology and Benchmarking (coordinated by me and co-chaired by John Hallam and Angel P. Del Pobil), and the following year within IEEE RAS, the TC Pebras started, that is still active today. In 2012, the Euron GEM SIG led to the establishment by euRobotics aisbl of the Topic Group on Replicable Robotics Research, Benchmarking and Competition, which I coordinate.

Series of workshops at IROS, ICRA and RSS have debated the related issues and proposed examples of reproducible experiments and measurable results. We are now at a point where we can provide concrete directions and guidelines for reproducible research in robotics and AI. In September 2015, the first ever “Special Issue on Reproducible Robotics Research” was published in the IEEE RAS Robotics and Automation Magazine. Reproducible research is becoming an IEEE priority, there are no more excuses to indulge in ‘proof by video’ and ‘it worked once in my lab’ attitudes.

Please check the links below if you want to learn more.

  1. Bonsignorio F., Del Pobil A., (Eds.), Replicable and Measurable Robotics Research, IEEE Robotics & Automation Magazine, 22(3), 2015 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7254310
  2. Bonsignorio F., del Pobil A.P.,Toward Replicable and Measurable Robotics Research [From the Guest Editors], Robotics & Automation Magazine, 22 (3), 32-35, 2015 http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7254280&punumber=100
  3. Stoelen M. F. , de Tejada V. F., Huete A. J., Balaguer C., Bonsignorio F., Distributed and Adaptive Shared Control Systems: Methodology for the Replication of Experiments, IEEE Robotics & Automation Magazine, 22(4),137âAS146, 2015 http://ieeexplore.ieee.org/document/7307132/
  4. The IEEE RAS TC Pebras website: http://www.ieee-ras.org/performance-evaluation
  5. The Euron GEM Sig website page still listing related events http://www.heronrobots.com/EuronGEMSig/gem-sig-events


tags: ,


Fabio Bonsignorio is a professor in the BioRobotics Institute at the Scuola Superiore Sant'Anna (Pisa, Italy).
Fabio Bonsignorio is a professor in the BioRobotics Institute at the Scuola Superiore Sant'Anna (Pisa, Italy).





Related posts :



Social media round-up from #IROS2025

  27 Oct 2025
Take a look at what participants got up to at the IEEE/RSJ International Conference on Intelligent Robots and Systems.

Using generative AI to diversify virtual training grounds for robots

  24 Oct 2025
New tool from MIT CSAIL creates realistic virtual kitchens and living rooms where simulated robots can interact with models of real-world objects, scaling up training data for robot foundation models.

Robot Talk Episode 130 – Robots learning from humans, with Chad Jenkins

  24 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Chad Jenkins from University of Michigan about how robots can learn from people and assist us in our daily lives.

Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

From sea to space, this robot is on a roll

  13 Oct 2025
Graduate students in the aptly named "RAD Lab" are working to improve RoboBall, the robot in an airbag.

Robot Talk Episode 128 – Making microrobots move, with Ali K. Hoshiar

  10 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Ali K. Hoshiar from University of Essex about how microrobots move and work together.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence