Robohub.org
 

Robot formations that avoid obstacles


by
13 September 2010



share this:

In formations, robots are positioned at a precise distance and sometimes angle from one another to form shapes. Robots that advance in formations can share communication, computation and sensing resources and work together to explore the world or transport objects.

Ideally, robot formations should be able to advance in a common direction while avoiding obstacles in their environment. Addressing this challenge, Monteiro et al. propose that each robot follows a leader. The idea is that a leader who knows where to go is followed by robots that remain at a fixed angle and distance from it. These followers can then serve as leaders for other robots. As a result, each robot is directly or indirectly following a single leader while maintaining precise angle and distance to one robot in the formation as shown in the image below. “Who follows who?” is described by a matrix sent to the robots. The formation can therefore be changed by sending different formation matrices to the robots.

Hexagon formation. Robots R2, R6 and R3 follow R1. Robot R4 follows R2 and R5 follows R4.

To maintain the formation while avoiding obstacles, followers use an attractor dynamics approach that changes their speed and heading. Simply put, followers are attracted to positions at correct distance and angle from their leader while being repulsed by obstacles. Using this technique formations can be formed from any starting position, can split to avoid obstacles and reassemble seamlessly.

Results in simulation and reality show robots can move in formations through cluttered environments with moving obstacles, replace leaders that have failed, and switch formations. In the video below three Khepera I robots are successful in switching between line, triangle and column formations and avoiding obstacles. In these experiments, robots needed to communicate their position to other robots in the formation. A later robot developed uses a camera to alleviate the need to communicate since robots can directly sense where their neighbors are.

In the future, Monteiro et al. plan to investigate how to design formation matrices at runtime depending on the needs of a mission and avoid problems due to robots not seeing each other.




Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory
Sabine Hauert is President of Robohub and Associate Professor at the Bristol Robotics Laboratory





Related posts :



Robot Talk at the Smart City Robotics Competition

  22 Oct 2025
In a special bonus episode of the podcast, Claire chatted to competitors, exhibitors, and attendees at the Smart City Robotics Competition in Milton Keynes.

Robot Talk Episode 129 – Automating museum experiments, with Yuen Ting Chan

  17 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Yuen Ting Chan from Natural History Museum about using robots to automate molecular biology experiments.

What’s coming up at #IROS2025?

  15 Oct 2025
Find out what the International Conference on Intelligent Robots and Systems has in store.

From sea to space, this robot is on a roll

  13 Oct 2025
Graduate students in the aptly named "RAD Lab" are working to improve RoboBall, the robot in an airbag.

Robot Talk Episode 128 – Making microrobots move, with Ali K. Hoshiar

  10 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Ali K. Hoshiar from University of Essex about how microrobots move and work together.

Interview with Zahra Ghorrati: developing frameworks for human activity recognition using wearable sensors

and   08 Oct 2025
Zahra tells us more about her research on wearable technology.

Women in robotics you need to know about 2025

  06 Oct 2025
This global list celebrates women's impact across the robotics ecosystem and globe.

Robot Talk Episode 127 – Robots exploring other planets, with Frances Zhu

  03 Oct 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Frances Zhu from the Colorado School of Mines about intelligent robotic systems for space exploration.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence