Robohub.org
 

Towards independence: A shared control BCI telepresence robot


by
29 June 2015



share this:
Telepresence robots give the disabled a sense of independence (Photo: Alain Herzog, EPFL)

Telepresence robots give the disabled a sense of independence (Photo: Alain Herzog, EPFL)

For those with extreme mobility problems, such as paralysis following spinal cord injury or neurological disease, telepresence can greatly help to offset social isolation. However, controlling a mobile telepresence device through obstacles like doorways can be difficult when fine motor skills have been compromised. Researchers from CNBI, EPFL and NCCR Robotics this week published a cunning solution that uses brain-computer interfaces (BCIs) to enable patients to share control with the robot, making it far easier to navigate.

The idea  is for patients to use BCIs to remotely control a mobile telepresence robot, through which the user can move and communicate with friends using a bidirectional audio/video connection.

The study tested nine end users and 10 healthy participants using a BCI and telepresence robot. The aim was to study both the BCI configuration and shared control of the robot when used in tandem with this.

The system was tested using a non-invasive BCI to record brain impulses from a cap placed over the head on the sensorimotor complex, with 16 electroencephalogram (EEG) channels transmitting to the robot via Skype. Healthy participants, who were at home, were then asked to remotely manoeuvre the robot in the CNBI lab along a set path with obstacles (such as doorways and tables) and under four separate conditions: BCI shared control; BCI no shared control; manual shared control and manual no shared control. Two separate conditions (BCI shared control and BCI no shared control) were used with end-users.

https://youtu.be/I1KvtNhv9Yc

In the shared control condition, the robot uses sensors to avoid obstacles without instruction from the driver, this has two advantages:

Firstly, inaccuracies in the system are reduced. For example, if a participant instructs the robot to turn left, this can result in a hard turn or a gentle turn; the system isn’t able to detect which. With shared control, if the user wishes to travel through a doorway to the left, they instruct the robot to turn in that direction, and the robot uses its sensors to avoid the doorframe and travels safely through it.

The second advantage is that less information needs to be communicated from the user, thus reducing the cognitive workload. In shared control, participants were able to complete tasks in shorter time periods and with fewer commands.

Of the 19 participants, all were able to pilot the robot after training. There was no discernable difference in ability between disabled and able-bodied users. “Each of the nine subjects with disabilities managed to remotely control the robot with ease after less than 10 days of training,” said Prof. José del R. Millán, who was in charge of the study.

Where possible, patients were also allowed to control the robot through small residual movements, such as head leans that someone might perform while playing a video game, or pressing a button with their head. It was remarkable that these movements were shown to be no more effective in controlling the robot than using the information transmitted over the BCI alone.

Reference:

R. Leeb, L. Tonin, M. Rohm, L. Desideri, T. Carlson and J. Millán, “Towards Independence: A BCI Telepresence Robot for People with Severe Motor Disabilities,” Proceedings of the IEEE, vol. 103, no. 6, pp. 969-982, Jun 2015. A



tags: , , ,


NCCR Robotics





Related posts :



MIT engineers design an aerial microrobot that can fly as fast as a bumblebee

  31 Dec 2025
With insect-like speed and agility, the tiny robot could someday aid in search-and-rescue missions.

Robohub highlights 2025

  29 Dec 2025
We take a look back at some of the interesting blog posts, interviews and podcasts that we've published over the course of the year.

The science of human touch – and why it’s so hard to replicate in robots

  24 Dec 2025
Trying to give robots a sense of touch forces us to confront just how astonishingly sophisticated human touch really is.

Bio-hybrid robots turn food waste into functional machines

  22 Dec 2025
EPFL scientists have integrated discarded crustacean shells into robotic devices, leveraging the strength and flexibility of natural materials for robotic applications.

Robot Talk Episode 138 – Robots in the environment, with Stefano Mintchev

  19 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Stefano Mintchev from ETH Zürich about robots to explore and monitor the natural environment.

Artificial tendons give muscle-powered robots a boost

  18 Dec 2025
The new design from MIT engineers could pump up many biohybrid builds.

Robot Talk Episode 137 – Getting two-legged robots moving, with Oluwami Dosunmu-Ogunbi

  12 Dec 2025
In the latest episode of the Robot Talk podcast, Claire chatted to Oluwami Dosunmu-Ogunbi from Ohio Northern University about bipedal robots that can walk and even climb stairs.



 

Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


 












©2025.05 - Association for the Understanding of Artificial Intelligence